《高二下学期数学期末考试试卷(文科)(共16页).docx》由会员分享,可在线阅读,更多相关《高二下学期数学期末考试试卷(文科)(共16页).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上高二下学期数学期末考试试卷(文科)(时间:120分钟,分值:150分)一、单选题(每小题5分,共60分)1把十进制的23化成二进制数是()A. 00 110(2)B. 10 111(2)C. 10 110(2)D. 11 101(2)2从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数,则这个两位数大于30的概率是()A. 15B. 25C. 35D. 453已知命题:“,有成立”,则命题为()A. ,有成立B. ,有成立C. ,有成立D. ,有成立4如果数据x1,x2,xn的平均数为,方差为s2,则5x12,5x22,5xn2的平均数和方差分别为()A
2、. ,s2B. 52,s2C. 52,25s2D. ,25s25某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为()A. 15B. 18C. 21D. 226按右图所示的程序框图,若输入,则输出的=()A. 14B. 17C. 19D. 217若双曲线的一条渐近线方程为,则该双曲线的离心率为()A. B. C. D. 8已知,命题:若,则,在命题、的逆命题、的否命题、的逆否命题、这5个命题中,真命题的个数为()A. B. C. D. 9函数f(x)在点(1,2)处的切线方程为()A
3、. 2xy40B. 2xy0C. xy30D. xy1010椭圆的离心率是,则它的长轴长是()A. B. 或C. D. 或11已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为()A. B. C. D. 12已知函数在区间上存在极值,则实数的取值范围是()A. B. C. D. 二、填空题(每小题5分,共20分)13如图,正方形内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是_14已知某校随机抽取了名学生,将他们某次体育测试成绩制成如图所示的频率分布直方图.若该
4、校有名学生,则在本次体育测试中,成绩不低于分的学生人数约为_15设经过点的等轴双曲线的焦点为,此双曲线上一点满足,则的面积_16已知函数,若恒成立,则实数m的取值范围是_。三、解答题17(本小题10分)设p:实数x满足x2-4ax+3a20;q:实数x满足x2-x-60x2+3x-100(1)若a=1,且pq为真,求实数x的取值范围;(2)若q是p的充分不必要条件,求实数a的取值范围18(本小题12分)据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力
5、争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)若销售金额(单位:万元)不低于平均值x的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.19(本小题12分)某公司近年来科研费用支出万元与公司所获利润万元之间有如表的统计数据:参考公式:用最小二乘法求出关于的线性回归方程为: ,其中: , ,参考数值: 。()求出;()根据上表提供的数据可知公司所获利
6、润万元与科研费用支出万元线性相关,请用最小二乘法求出关于的线性回归方程;()试根据()求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润。20(本小题12分)椭圆的左、右焦点分别为F1,F2,一条直线经过点F1与椭圆交于A,B两点(1)求ABF2的周长;(2)若的倾斜角为,求弦长|AB|21(本小题12分)已知抛物线和直线,为坐标原点(1)求证: 与必有两交点; (2)设与交于两点,且直线和斜率之和为,求的值22(本小题12分)已知函数(为自然对数的底数)()若函数的图像在处的切线与直线垂直,求的值;()对总有0成立,求实数的取值范围专心-专注-专业参考答案1B【解析】23
7、2=111112=5152=2122=1012=01故23(10)=10111(2)故选:B点睛:利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案2C【解析】从数字1,2,3,4,5中任取2个,组成一个没有重复数字的两位数共有A52=20个,其中这个两位数小于30的个数为C21C41=8个(十位1,2中任选1个,个位其余4个数选1个),故所求概率P=1820=35故选:C3A【解析】根据特称命题的否定为全称命题所以命题:“,有成立”,则命题为,有成立故选A4C【解析】数据x1,x2,xn的平均数为,方差为s2,5x1+2,5x2+2
8、,5xn+2的平均数为5+2,方差为25s2故选:C5C【解析】由已知得间隔数,则抽取的最大编号为;故选C.6A【解析】执行程序,可得程序框图的功能是计算S=1+2+3+ 的值,当S81时,输出i+1的值由于S=1+2+3+i=,当i=12时,S=7881,当i=13时,S=9181,满足退出循环的条件,故输出i的值为13+1=14故选:A点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7B【解析】双曲线(焦点在y轴
9、)的一条渐近线方程为,故可将双曲线方程写为: ,即得离心率,故选:B点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.8B【解析】由对数的单调性可知:当时, ,故命题是真命题;由命题与逆否命题的等价性可知命题的逆否命题也是真命题。其它三个命题中,逆命题不真,否命题也是错误的,命题也是不正确的,应选答案B。9C【解析】f(x),则f(1)1,故函数f(x)在点(1,2)处的切线方程为y(2)x1,即xy30.故选:C10
10、D【解析】椭圆方程为。当时, ,由题意得,解得,此时长轴长为;当时, 由题意得,解得,此时长轴长为2。综上椭圆的长轴长为或。选D。11D【解析】根据抛物线的定义P到焦点的距离等于P到准线的距离,所以点到点的距离与点到抛物线焦点距离之和最小,只需点到点的距离与点P到准线的距离之和最小,过点作准线的垂线,交抛物线于点P,此时距离之和最小,点P的坐标为.12D【解析】,令,得x=1,当,当,所以是函数的极大值点,又因为函数在区间上存在极值,所以,解得,故选D考点:导数的应用,极值.13【解析】设正方形的边长为,则黑色部分的面积为: ,结合几何概型的计算公式可得,满足题意的概率值为: .14【解析】依
11、题意,所求人数为,故答案为.153【解析】设双曲线的方程为 ,代入点,可得 ,双曲线的方程为 ,即 设,则 ,的面积为 即答案为316【解析】对任意ba2, 1恒成立,等价于f(b)bf(a)a恒成立;设h(x)=f(x)x=lnx+x(x2),则h(b)h(a)h(x)在(2,+)上单调递减;h(x)=在(2,+)上恒成立,mx2+x(x2),m;m的取值范围是-2,+)故答案为: 。点睛:本题考查了导数的综合应用问题,解题时应根据函数的导数判定函数的增减性以及求函数的极值和最值,应用分类讨论法,构造函数等方法来解答问题对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为
12、函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数。17(1)2x3. (2)(1,2.【解析】【解析】试题分析:(1)先分别求命题为真时实数x的取值集合(设A,B ),再根据 “pq为真”得 “p真且q真”,利用集合交集AB求实数x的取值范围,(2)由q是p的充分不必要条件,得两集合关系为包含关系AB,AB,利用数轴可得实数a的取值范围试题解析:(1)由x2-4ax+3a20,得(x-3a)(x-a)0,ax3a当a=1时,1x3,即p为真时实数x的取值范围是1x0,得2x3,即q为真时实数x的取值范围是2x3,若pq为真,则
13、p真且q真,实数x的取值范围是2x3a2,解得1a2,实数a的取值范围是1a25分18(1) 推断该地区110家微商中有55家优秀;(2)35【解析】试题分析:(1)由题意得到销售金额的平均数,再判断优秀微商的数目,最后估计该地区110家微商中的优秀微商的数目。(2)根据古典概型概率公式计算即可。试题解析:(1)6家微商一周的销售金额分别为8,14,17,23,26,35,故销售金额的平均值为x=16(8+14+17+23+26+35)=20.5。 由题意知优秀微商有3家,故优秀的概率为12,由此可推断该地区110家微商中有55家优秀。6分(2)从随机抽取的6家微商中再任取2家举行消费者回访调
14、查活动,有C62=15种,设“恰有1家是优秀微商”为事件A,则事件A包含的基本事件个数为C31C31=9种,所以P(A)=915=35.即恰有1家是优秀微商的概率为35。6分19(1)3.5,28(2)(3)64.4万元【解析】试题分析:(1)利用平均值公式与所给参考数值求解即可;(2)利用公式求得,将样本中心点的坐标代入回归方程,求得,从而可得结果;(3)利用第二问的回归方程进行求值,预测即可试题解析:(1)。4分(2) , , 。 , 所以回归方程为。4分(3)当时, (万元),故预测该公司科研费用支出为10万元时公司所获得的利润为64.4万元。4分【方法点晴】本题主要考查线性回归方程,属
15、于难题.求回归直线方程的步骤:依据样本数据画出散点图,确定两个变量具有线性相关关系;计算的值;计算回归系数;写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20(1)8(2) 【解析】试题分析:解决椭圆问题要注意“勿忘定义”,根据椭圆的定义,把三角形周长看成点到两焦点的距离和及点到两焦点距离和,求椭圆的弦长利用弦长公式,一般设而不求,把直线方程和椭圆方程联立方程组,借助根与系数的关系,利用和求弦长.试题解析:(1)椭圆,a=2,b=,c=1,由椭圆的定义,得丨AF1丨+丨AF2丨=2a=4,丨BF1丨+丨BF2丨=2a=4
16、,又丨AF1丨+丨BF1丨=丨AB丨,ABF2的周长为 故ABF2点周长为8;6分(2)由(1)可知,得F1(1,0),AB的倾斜角为,则AB斜率为1,A(x1,y1),B(x2,y2),故直线AB的方程为y=x+1. ,整理得:7y26y9=0,由韦达定理可知:y1+y2=,y1y2=,则由弦长公式|AB|= ,弦长|AB|=6分21(1)见解析;(2)【解析】试题分析:把直线方程和抛物线方程联立方程组,代入消元后得出一元二次方程,证明与必有两交点,只需证明判别式大于零,利用设而不求思想先设出点A、B的坐标,根据直线和斜率之和为,列出两点坐标的关系,由于两点坐标满足直线的方程,所以把代入化为的关系,把根与系数关系代入后求出斜率的值试题解析:(1)证明:联立抛物线和直线,可得, , 与C必有两交点; 6分(2)解:设 , ,则 ,因为, ,代入,得 ,因为, ,代入得.6分【点睛】证明与必有两交点,只需联立方程组,代入消元后得出一元二次方程,证明判别式大于零,利用设而不求思想先设出点A、B的坐标,根据直线和斜率之和为,列出两点坐标的关系,由于两点坐标满足直线的方程,所以把代入化为的关系,把根与系数关系代入后求出斜率的值22() ;() .试题解析:() 函数的图像在处的切线与直线垂直 6分()时 设, , . 令得;令得时, 为增函数, 时, 为减函数, 6分