浙教版数学七年级下第五章整式的乘除重点复习.docx

上传人:叶*** 文档编号:57775253 上传时间:2022-11-05 格式:DOCX 页数:8 大小:72.34KB
返回 下载 相关 举报
浙教版数学七年级下第五章整式的乘除重点复习.docx_第1页
第1页 / 共8页
浙教版数学七年级下第五章整式的乘除重点复习.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《浙教版数学七年级下第五章整式的乘除重点复习.docx》由会员分享,可在线阅读,更多相关《浙教版数学七年级下第五章整式的乘除重点复习.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、七年级下数学 整式的乘除复习按住ctrl键 点击查看更多初中七年级资源【知识点归纳】1.单项式的概念:由数及字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。如:的 系数为,次数为4,单独的一个非零数的次数是0。2.多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:,项有、1,二次项为、,一次项为,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。3、整式:单项式和多项式统称整式。注意:凡分母含有字母代数式都不是整式。也不是单项式和

2、多项式。4、多项式按字母的升(降)幂排列:如:按的升幂排列:按的降幂排列:按的升幂排列:按的降幂排列:5、同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:6、幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。如:幂的乘方法则可以逆用:即如:7、积的乘方法则: (是正整数)积的乘方,等于各因数乘方的积。如:(=8、同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不变,指数相减。如:9、零指数和负指数;,即任何不等于零的数的零次方等于1。(是正整数),即一个不等于零的数的次方等于这个数的次方的倒数。如:10、科学记数法:如:0.0

3、0000721=7.21(第一个不为零的数前面有几个零就是负几次方)11、单项式的乘法法则:单项式及单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:积的系数等于各因式系数的积,先确定符号,再计算绝对值。相同字母相乘,运用同底数幂的乘法法则。只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式乘法法则对于三个以上的单项式相乘同样适用。单项式乘以单项式,结果仍是一个单项式。如:12、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即(都是单项式)注意:积是一个多项式,其项数及多项式的项数相同。运算时要

4、注意积的符号,多项式的每一项都包括它前面的符号。在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。如:13、多项式及多项式相乘的法则;多项式及多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。如:14、平方差公式:注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。如: 15、完全平方公式:公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。注意: 完全平方公式的口诀:首平方,尾平方,加上首尾乘积

5、的2倍。16、三项式的完全平方公式:17、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式如:18、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:.【历年考点分析】 整式的运算是初中数学的基础,是中考中的一个重点内容.和整式有关的考点主要涉及以下几个方面:1.幂的运算;2.整式的乘法运算;3.因式分解.具体分析如下:考点1:幂的有关运算例1 下

6、列运算中,计算结果正确的是( )(A)a4a3=a12 (B)a6a3=a2 (C)(a3)2=a5 (D)(-ab2)2=a2b4.分析:幂的运算包括同底数幂的乘法运算、幂的乘方、积的乘方和同底数幂的除法运算。幂的运算是整式乘除运算的基础。准确解决幂的有关运算的关键是熟练理解各种运算的法则。解:根据同底数幂的乘法运算法则知a4a3=a4+3=a7,所以(A)错;根据同底数幂的除法法则知a6a3=a6-3=a3。所以(B)错;根据幂的乘方运算法则知(a3)2=a32=a6,所以(C)错;所以选(D)。考点2:整式的乘法运算例2计算:(a24)(a-3)-a(a2-3a-3).分析:本题是一道整

7、式乘法综合计算题,解题时应先算乘法,然后再算加减,注意其去括号时符号的变化.解:(a24)(a-3)-a(a2-3a-3) =a3-3a24a-12-a33a23a=7a12.例3 如图1所示,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下图:则第n个图形中需用黑色瓷砖_块.(用含n的代数式表示). (1) (2) (3) (n) 图1分析:观察发现,第1个图形有黑色瓷砖35-31(块);第2个图形有黑色瓷砖46-24(块);第3个图形有黑色瓷砖57-35(块),依次类推,第n个图形有(n+4)(n+2)-n(n+2)块.解:(n+4)(n+2)-n(n+2)=n2+4n+2n+8-n

8、2-2n=4n+8.考点3:乘法公式例5先化简,再求值:(x+y)(x-y)+(x-y)2-(x2-3xy).其中x=2,y=.分析:本题是一道综合计算题,主要在于乘法公式的应用,化简时还有注意去括号符号的变化.解: (x+y)(x-y)+(x-y)2-(x2-3xy)=x2-y2+x2-2xy+y2-x2+3xy=x2+xy.当x=2,y=时,原式=22+2=4+1=5.例6 若整式是一个整式的平方,请你写满足条件的单项式Q是 . 分析:本题是一道结论开放题,由于整式包括单项式和多项式,所以可分类讨论可能出现的情况,当是一个单项式的平方时,Q=4x或-4x或4x4;当是一个单项式的平方时,Q

9、=-1或-4x2,解:可填4x或-4x或4x4或-4x2或-1.考点4: 整式的除法运算例7 先化简,再求值:(x-y)2+(x+y)(x-y)2x,其中x=3,y=1.5.分析:本题的一道综合计算题,首先要先算括号的,为了计算简便,要注意乘法公式的使用,然后在进行整式的除法运算,最后代入求值.解: (x-y)2+(x+y)(x-y)2x=(x2-2xy+y2+x2-y2)2x=(2x2-2xy)2x=x-y.当x=3,y=1.5时,原式=3-1.5=1.5.考点6:因式分解例8 观察下列等式:12+21=1(1+2),22+22=2(2+2),32+23=3(3+2), 则第n个式子可以表示为:_.分析:观察已知各等式,可以发现,等式的左边是两项,第1项是是从1开始的整数的平方,第2项是2及这个整数的乘积,所以左边可用一般式子表示为n2+2n(n1的整数),每一项等式的右边是这个整数乘以这个整数及2的和的积,所以可用一般的式子表示为n(n+2),所以第n个等式为n2+2n=n(n+2).本题实际是因式分解的变式应用.解: n2+2n=n(n+2).8 / 8

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁