《本科离散数学.docx》由会员分享,可在线阅读,更多相关《本科离散数学.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、本科:1009离散数学一、单项选择题1设P:a是偶数,Q:b是偶数。R:a + b是偶数,则命题“若a是偶数,b是偶数,则a + b 也是偶数”符号化为(D P QR)。2表达式x(P(x,y)Q(z)y(Q(x,y)zQ(z)中x的辖域是(P(x,y) Q(z)。3设则命题为假的是()。4设G是有n个结点的无向完全图,则G的边数( 1/2 n(n-1)。5设G是连通平面图,有v个结点,e条边,r个面,则r=( e-v+2)。6若集合A=1,2,1,2,则下列表述正确的是( 1A )7已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( 5 )8设无向图G的邻接矩阵为则
2、G的边数为( 7 )9设集合A=a,则A的幂集为(,a )10下列公式中 (AB (AB) )为永真式11若G是一个汉密尔顿图,则G一定是( 连通图 )12集合A=1, 2, 3, 4上的关系R=|x=y且x, yA,则R的性质为(传递的 )13设集合A=1,2,3,4,5,偏序关系是A上的整除关系,则偏序集上的元素5是集合A的(极大元 )14图G如图一所示,以下说法正确的是 ( (a, d) ,(b, d)是边割集 ) 图一15设A(x):x是人,B(x):x是工人,则命题“有人是工人”可符号化为((x)(A(x)B(x) )16若集合A=1,2,B=1,2,1,2,则下列表述正确的是(AB
3、,且AB )17设有向图(a)、(b)、(c)与(d)如图一所示,则下列结论成立的是 ( (d)是强连通的 )18设图G的邻接矩阵为则G的边数为( 5 )19无向简单图G是棵树,当且仅当(G连通且边数比结点数少1 )20下列公式 (P(QP)(P(PQ) )为重言式21若集合A a,a,1,2,则下列表述正确的是(aA)22设图G,vV,则下列结论成立的是 ( ) 23命题公式(PQ)R的析取范式是 ((PQ)R )24下列等价公式成立的为(P(QP) P(PQ) )25设A=a, b,B=1, 2,R1,R2,R3是A到B的二元关系,且R1=, ,R2=, , ,R3=, ,则( R2 )不
4、是从A到B的函数26设A=1, 2, 3, 4, 5, 6, 7, 8,R是A上的整除关系,B=2, 4, 6,则集合B的最大元、最小元、上界、下界依次为 (无、2、无、2)27若集合A的元素个数为10,则其幂集的元素个数为(1024)28如图一所示,以下说法正确的是 (e是割点)图一29设完全图K有n个结点(n2),m条边,当( n为奇数)时,K中存在欧拉回路 30已知图G的邻接矩阵为 ,则G有( 5点,7边 ) 二、填空题(每小题3分,共15分)1设A,B为任意命题公式,C为重言式,若A CBC,那么AB是 重言 式(重言式、矛盾式或可满足式)。2命题公式(PQ)P的主合取范式为 。3设集
5、合A=,a,则P(A)= 。4设图G =V,E, G =V,E,若 V=V,E E ,则G是G的生成子图。5在平面G =V,E中,则= 2|E| ,其中(i=1,2,r)是G的面。6命题公式的真值是 假(或F,或0) 7若无向树T有5个结点,则T的边数为 4 8设正则m叉树的树叶数为t,分支数为i,则(m-1)i= t-1 9设集合A=1,2上的关系R,,则在R中仅需加一个元素 ,就可使新得到的关系为对称的10(x)(A(x)B(x,z)C(y)中的自由变元有 z,y 11若集合A=1,3,5,7,B=2,4,6,8,则AB= 空集(或) 12设集合A=1,2,3上的函数分别为:f=,,g=,
6、,则复合函数gf = , , , 13设G是一个图,结点集合为V,边集合为E,则G的结点度数之和为 2|E|(或“边数的两倍”) 14无向连通图G的结点数为v,边数为e,则G当v与e满足 e=v-1 关系时是树 15设个体域D1, 2, 3, P(x)为“x小于2”,则谓词公式(x)P(x) 的真值为 假(或F,或0) 16命题公式的真值是 T (或1) 17若图G=中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为 W|S| 18给定一个序列集合000,001,01,10,0,若去掉其中的元素 0 ,则该
7、序列集合构成前缀码19已知一棵无向树T中有8个结点,4度,3度,2度的分支点各一个,T的树叶数为 5 20(x)(P(x)Q(x)R(x,y)中的自由变元为 R(x,y )中的y 21设集合A=0, 1, 2, 3,B=2, 3, 4, 5,R是A到B的二元关系,则R的有序对集合为 ,22设G是连通平面图,v, e, r分别表示G的结点数,边数和面数,则v,e和r满足的关系式 v-e+r=2 23设G是有6个结点,8条边的连通图,则从G中删去 3 条边,可以确定图G的一棵生成树24无向图G存在欧拉回路,当且仅当G连通且 所有结点的度数全为偶数 25设个体域D1,2,则谓词公式消去量词后的等值式
8、为 A(1)A(2) 26设集合Aa,b,那么集合A的幂集是 ,a,b,a,b 27如果R1和R2是A上的自反关系,则R1R2,R1R2,R1-R2中自反关系有 2 个 28设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 4 条边后使之变成树29设连通平面图G的结点数为5,边数为6,则面数为 3 30设个体域Da, b,则谓词公式(x)A(x)($x)B(x)消去量词后的等值式为 (A (a)A (b)(B(a)B(b)) 31. 设集合A=0,1 ,2 ,B=l ,2 ,3 , 剖,R 是A到B 的二元关系,R= |xA且yB且x, yAB 则R的有序对集合为_,_32. 设
9、G是连通平面图,v, e , r 分别表示G的结点数, 边数和面数, 则 v, e 和r 满足的关系式_v-e+r=2_33.G=是有20个结点,25 条边的连通图,则从G中删去_6_条边,可以确定图G的一棵生成树.34. 无向图G存在欧拉回路, 当且仅当G所有结点的度数全为偶数且_ 连通_35. 设个体域D= 1, 2 , 则谓词公式 xA(x)消去量词后的等值式为_A(1)A(2)_三、化简解答题11设集合A=1,2,3,4,A上的二元关系R,R=1,1,1,4,2,2,2,3,3,2,3,3,4,1,4,4,说明R是A上的等价关系。解 从R的表达式知,即R具有自反性; 三、逻辑公式翻译1
10、将语句“今天上课”翻译成命题公式设P:今天上课, 则命题公式为:P 2将语句“他去操场锻炼,仅当他有时间”翻译成命题公式设 P:他去操场锻炼,Q:他有时间, 则命题公式为:P Q3将语句“他是学生”翻译成命题公式设P:他是学生, 则命题公式为: P 4将语句“如果明天不下雨,我们就去郊游”翻译成命题公式设P:明天下雨,Q:我们就去郊游, 则命题公式为: P Q 5将语句“他不去学校”翻译成命题公式设P:他去学校, P 6将语句“他去旅游,仅当他有时间”翻译成命题公式设 P:他去旅游,Q:他有时间, P Q 7将语句“所有的人都学习努力”翻译成命题公式设P(x):x是人,Q(x):x学习努力,
11、(x)(P(x)Q(x)8将语句“如果你去了,那么他就不去”翻译成命题公式设P:你去,Q:他去, PQ 9将语句“小王去旅游,小李也去旅游”翻译成命题公式设P:小王去旅游,Q:小李去旅游, PQ 10将语句“所有人都去工作”翻译成谓词公式设P(x):x是人,Q(x):x去工作, (x)(P(x)Q(x) 11将语句“如果所有人今天都去参加活动,则明天的会议取消”翻译成命题公式设P:所有人今天都去参加活动,Q:明天的会议取消, P Q 12将语句“今天没有人来” 翻译成命题公式设 P:今天有人来, P13将语句“有人去上课” 翻译成谓词公式设P(x):x是人,Q(x):x去上课, ($x)(P(
12、x) Q(x)1 1. 将语句如果小李学习努力,那么他就会取得好成绩. 翻译成命题公式. 设P:小李学习努力,Q:小李会取得好成绩,PQ12. 将语句小张学习努力,小王取得好成绩. 翻译成命题公式.设P:小张学习努力,Q:小王取得好成绩,PQ四、判断说明题1设集合A=1,2,B=3,4,从A到B的关系为f=,则f是A到B的函数错误 因为A中元素2没有B中元素与之对应,故f不是A到B的函数2设G是一个有4个结点10条边的连通图,则G为平面图错误 不满足“设G是一个有v个结点e条边的连通简单平面图,若v3,则e3v-6”3设N、R分别为自然数集与实数集,f:NR,f (x)=x+6,则f是单射正确
13、 设x1,x2为自然数且x1x2,则有f(x1)= x1+6 x2+6= f(x2),故f为单射4下面的推理是否正确,试予以说明 (1) (x)F(x)G(x) 前提引入 (2) F(y)G(y) US(1)错误 (2)应为F(y)G(x),换名时,约束变元与自由变元不能混淆5如图二所示的图G存在一条欧拉回路图二错误 因为图G为中包含度数为奇数的结点6设G是一个有6个结点14条边的连通图,则G为平面图错误 不满足“设G是一个有v个结点e条边的连通简单平面图,若v3,则e3v-6”7如果R1和R2是A上的自反关系,则R1R2是自反的正确 R1和R2是自反的,x A, R1, R2,则 R1R2,
14、所以R1R2是自反的 8如图二所示的图G存在一条欧拉回路v1v2v3v5v4dbacefghn图二 正确 因为图G为连通的,且其中每个顶点的度数为偶数9P(PQ)P为永真式正确 P(PQ)P是由P(PQ)与P组成的析取式,如果P的值为真,则P(PQ)P为真, 如果P的值为假,则P与PQ为真,即P(PQ)为真,也即P(PQ)P为真,所以P(PQ)P是永真式 另种说明:P(PQ)P是由P(PQ)与P组成的析取式,只要其中一项为真,则整个公式为真 可以看到,不论P的值为真或为假,P(PQ)与P总有一个为真, 所以P(PQ)P是永真式 或用等价演算P(PQ)PT10若偏序集的哈斯图如图一所示,则集合A
15、的最大元为a,最小元不存在 图一正确 对于集合A的任意元素x,均有R(或xRa),所以a是集合A中的最大元按照最小元的定义,在集合A中不存在最小元 11. 如果R1和R2是A上的自反关系, 则R1R2是自反的。正确,R1和R2,是自反的,xA,R1,R2,则 R1R2,所以R1R2是自反的.12. 如图二所示的图中存在一条欧拉回路.图二正确,因为图G为连通的,且其中每个顶点的度数为偶数。五计算题(每小题12分,本题共36分)1试求出(PQ)(RQ)的析取范式(PQ)(RQ) (PQ)(RQ) (PQ)(RQ) (PQ)RQ(析取范式) 2设A=1, 1, 2,B= 1, 2,试计算(1)(AB
16、) (2)(AB) (3)A -(AB)(1)(AB)=1 (2)(AB)=1, 2, 1, 2 (3) A-(AB)=1, 1, 2 3图G=,其中V= a, b, c, d ,E= (a, b), (a, c) , (a, d), (b, c), (b, d), (c, d),对应边的权值依次为1、2、3、1、4及5,试(1)画出G的图形; (2)写出G的邻接矩阵;图一ooooabcd112453(3)求出G权最小的生成树及其权值(1)G的图形表示如图一所示: 图二ooooabcd112453(2)邻接矩阵: (3)最小的生成树如图二中的粗线所示: 权为:1+1+3=5 4画一棵带权为1,
17、 2, 2, 3, 4的最优二叉树,计算它们的权ooooooooo1223347512最优二叉树如图三所示 图三权为13+23+22+32+42=27 5求(PQ)R的析取范式与合取范式(PQ)R (PQ)R (PQ)R (析取范式) (PR)(QR) (合取范式) 6设A=0,1,2,3,R=|xA,yA且x+y0,S=|xA,yA且x+y2,试求R,S,RS,S -1,r(R)R=, S=, RS=, S -1= S, r(R)=IA=,7试求出(PQ)R的析取范式,合取范式,主合取范式(PQ)R(PQ)R (PQ)R(析取范式) (PR) (QR)(合取范式) (PR)(QQ) (QR)
18、(PP) (PRQ)(PRQ) (QRP)(QRP) (PQR)(PQR) (PQR) 8设A=a, b, 1, 2,B= a, b, 1, 1,试计算(1)(A-B) (2)(AB) (3)(AB)-(AB)(1)(A-B)=a, b, 2 (2)(AB)=a, b, 1, 2, a, b, 1 (3)(AB)-(AB)=a, b, 2, a, b, 1 9图G=,其中V= a, b, c, d, e,E= (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) ,对应边的权值依次为2、1、2、3、6、1、4及5,试(1)
19、画出G的图形; (2)写出G的邻接矩阵;(3)求出G权最小的生成树及其权值(1)G的图形表示为: (2)邻接矩阵: (3)粗线表示最小的生成树, 权为7: 10设谓词公式,试(1)写出量词的辖域; (2)指出该公式的自由变元和约束变元(1)$x量词的辖域为, z量词的辖域为, y量词的辖域为 (2)自由变元为与中的y,以及中的z 约束变元为x与中的z,以及中的y 11设A=1,2,1,2,B=1,2,1,2,试计算(1)(A-B); (2)(AB); (3)AB(1)A-B =1,2 (2)AB =1,2 (3)AB=,, 12设G=,V= v1,v2,v3,v4,v5,E= (v1,v3),
20、(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) ,试(1)给出G的图形表示; (2)写出其邻接矩阵;(3)求出每个结点的度数; (4)画出其补图的图形(1)G的图形表示为: (2)邻接矩阵: (3)v1,v2,v3,v4,v5结点的度数依次为1,2,4,3,2 (4)补图如下: 13设集合A=1,2,3,4,R=|x, yA;|x-y|=1或x-y=0,试(1)写出R的有序对表示; (2)画出R的关系图;(3)说明R满足自反性,不满足传递性(1)R=, 1234(2)关系图为 3)因为,均属于R,即A的每个元素构成的有序对均在R中,故R在A上是自反的。 因有与属
21、于R,但不属于R,所以R在A上不是传递的。14求PQR的析取范式,合取范式、主析取范式,主合取范式P(RQ)P(RQ) PQR (析取、合取、主合取范式) (PQR)(PQR) (PQR) (PQR) (PQR) (PQR) (PQR) (主析取范式)15设图G=,V= v1,v2,v3,v4,v5,E= (v1, v2),(v1, v3),(v2, v3),(v2, v4),(v3, v4),(v3, v5),(v4, v5) ,试(1) 画出G的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;v1v2v3v4v5ooooo(4) 画出图G的补图的图形(1)关系图 (2)邻接矩
22、阵 (3)deg(v1)=2deg(v2)=3deg(v3)=4deg(v4)=3v1v2v3v4v5ooooodeg(v5)=2 (4)补图16设谓词公式$x(A(x,y) zB(x,y, z) yC(y,z) 试 (1)写出量词的辖域; $x量词的辖域为(A(x,y) zB(x,y, z), z量词的辖域为B(x,y,z), y量词的辖域为C(y,z) (2)指出该公式的自由变元和约束变元. 自由变元为(A(x,y) zB(x,y, z)中的y,以及C(y,z)中的z.约束变元为(A(x,y) zB(x,y, z)中的x与B(x,y,z)中的z,以及C(y,z)中的y。六、证明题1试证明:
23、若R与S是集合A上的自反关系,则RS也是集合A上的自反关系证明:设xA,因为R自反,所以x R x,即R;又因为S自反,所以x R x,即S 即RS 故RS自反2试证明集合等式A (BC)=(AB) (AC) 证明:设S= A (BC),T=(AB) (AC),若xS,则xA或xBC,即 xA或xB 且 xA或xC也即xAB 且 xAC ,即 xT,所以ST 反之,若xT,则xAB 且 xAC, 即xA或xB 且 xA或xC, 也即xA或xBC,即xS,所以TS因此T=S3试证明集合等式A (BC)=(AB) (AC)证明:设S=A(BC),T=(AB)(AC), 若xS,则xA且xBC,即
24、xA且xB 或 xA且xC,也即xAB 或 xAC ,即 xT,所以ST 反之,若xT,则xAB 或 xAC, 即xA且xB 或 xA且xC 也即xA且xBC,即xS,所以TS 因此T=S4试证明集合等式A (BC)=(AB) (AC) 证明:设S= A (BC),T=(AB) (AC),若xS,则xA或xBC,即 xA或xB 且 xA或xC也即xAB 且 xAC ,即 xT,所以ST 反之,若xT,则xAB 且 xAC, 即xA或xB 且 xA或xC, 也即xA或xBC,即xS,所以TS因此T=S5试证明($x)(P(x)R(x) ($x)P(x)($x)R(x)证明: (1)($x)(P(
25、x)R(x) P (2)P(a)R(a) ES(1) (3)P(a) T(2)I (4)($x)P(x) EG(3) (5)R(a) T(2)I (6)($x)R(x) EG(5) (7)($x)P(x)($x)R(x) T(5)(6)I 6设m是一个取定的正整数,证明:在任取m1个整数中,至少有两个整数,它们的差是m的整数倍证明 设,为任取的m1个整数,用m去除它们所得余数只能是0,1,m1,由抽屉原理可知,这m1个整数中至少存在两个数和,它们被m除所得余数相同,因此和的差是m的整数倍。7已知A、B、C是三个集合,证明A-(BC)=(A-B)(A-C) 证明 x A-(BC) x Ax(BC
26、) x A(xBxC) (x AxB)(x AxC) x(A-B)x(A-C) x(A-B)(A-C)A-(BC)=(A-B)(A-C)8(15分)设是半群,对A中任意元a和b,如ab必有a*bb*a,证明:(1)对A中每个元a,有a*aa。 (2)对A中任意元a和b,有a*b*aa。 (3)对A中任意元a、b和c,有a*b*ca*c。证明 由题意可知,若a*bb*a,则必有ab。(1)由(a*a)*aa*(a*a),所以a*aa。(2)由a*(a*b*a)(a*a)*(b*a)a*b*(a*a)(a*b*a)*a,所以有a*b*aa。(3)由(a*c)*(a*b*c)(a*c*a)*(b*c
27、)a*(b*c)(a*b)*c(a*b)*(c*a*c)(a*b*c)*(a*c),所以有a*b*ca*c。13. 设A,B为任意集合,证明:(A-B)-C = A-(BC).证明:(A-B)-C = (AB)C = A(BC)= A(BC)= A-(BC)9求命题公式(PQ)(PQ) 的主析取范式和主合取范式解:(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ)(PQ) (PPQ)(QPQ)(PQ)M1m0m2m310例5在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8。证明:把边长为1的正方形分成四个全等的小正方形,则至
28、少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。11. 试证明集合等式AU( BC)=(AUB) (AUC).证明:设S=AU(BC),T=(AUB) (AUC),若xS,则xA或xBC,即xA或xB且xA或xC,也即xAUB且xAUC,即xT,所以sT.反之,若xT,则xAUB且xAUC,即xA或xB且xA或xC,也即xA或xBC,即xS,所以TS.因此T=S.12. 利用形式演绎法证明:PQ, RS, PR蕴涵QS。证明:PQ, RS, PR蕴涵QS(1) PRP(2) RPQ(1)(3) PQP(4) RQQ(2)(3)(5) QRQ(4)
29、(6) RSP(7) QSQ(5)(6)(8) QSQ(7)14.利用形式演绎法证明:AB, CB, CD蕴涵AD。证明:AB, CB, CD蕴涵AD(1) AD(附加)(2) ABP(3) BQ(1)(2)(4) CBP(5) BCQ(4)(6) CQ(3)(5)(7) CDP(8) DQ(6)(7)(9) ADD(1)(8)所以 AB, CB, CD蕴涵AD.15. A, B为两个任意集合,求证:A(AB) = (AB)B .证明:A(AB) = A(AB)A(AB)(AA)(AB)(AB)(AB)AB而 (AB)B= (AB)B= (AB)(BB)= (AB)= AB所以:A(AB) = (AB)B.12 / 12第 12 页 共 12 页