《抛物线培优讲义(学生版)(共5页).docx》由会员分享,可在线阅读,更多相关《抛物线培优讲义(学生版)(共5页).docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第三节抛物线考点一 抛物线的定义和标准方程1.已知抛物线y2=2px(p0)的准线与圆x2+y2-6x-7=0相切,则p的值为()(A) (B)1 (C)2 (D)42.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为()(A) (B)1 (C) (D)3.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|等于()(A)2 (B)2 (C)4 (D)24.如图所示是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.水位下降1 m后,水
2、面宽m. 考点二 抛物线的几何性质及其应用1.在抛物线y=x2+ax-5(a0)上取横坐标为x1=-4,x2=2的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为()(A)(-2,-9) (B)(0,-5) (C)(2,-9) (D)(1,-6)2.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()(A)2 (B)3 (C) (D)3.过抛物线y2=2px(p0)的焦点F作倾斜角为45的直线交抛物线于A、B两点,若线段AB的长为8,则p=.4.已知抛物线C:
3、y2=2px(p0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B,若=,则p=.考点三 直线与抛物线位置关系1.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则AOB的面积为()(A) (B) (C) (D)22.设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=2,则BCF与ACF的面积之比等于()(A) (B) (C) (D)3.已知直线y=k(x+2)(k0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k等于()(A) (
4、B) (C) (D)4.已知抛物线C:y2=8x与点M(-2,2),过C的焦点且斜率为k的直线与C交于A、B两点,若=0,则k等于()(A) (B) (C) (D)25.已知直线y=a交抛物线y=x2于A,B两点.若该抛物线上存在点C,使得ACB为直角,则a的取值范围为.6.过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若|AB|=,|AF|0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若BFD=90,ABD的面积为4,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n
5、距离的比值.9.已知抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:x-y-2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|BF|的最小值.10.过抛物线E:x2=2py(p0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(1)若k10,k20,证明:0).点M(x0,y0)在抛物线C2上,过M作C1的切线,切点A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.(1)求p的值;(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).专心-专注-专业