《2022年人教版必修二5.6《向心力》WORD教案7 .pdf》由会员分享,可在线阅读,更多相关《2022年人教版必修二5.6《向心力》WORD教案7 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、名师精编优秀教案向心加速度(学案)一、学习目标1.知道匀速圆周运动是变速运动,存在加速度。2.理解匀速圆周运动的加速度指向圆心,所以又叫做向心加速度。3.知道向心加速度和线速度、角速度的关系式4.能够运用向心加速度公式求解有关问题二、课前预习1、匀速圆周运动的特点:线速度:;角速度。(“存在”或“不存在”)加速度。2、向心加速度,公式,单位,方向。物理意义。3、匀速圆周运动是匀变速曲线运动吗?。三、经典例题例 1、如下图,物体沿顺时针方向做匀速圆周运动,角速度=rad/s,半径 R=1m。0时刻物体处于A点,s31后物体第一次到达B点,求(1)这s31内的速度变化量;(2)这s31内的平均加速
2、度。例 2、一物体做平抛运动的初速度为10m/s,则 1 秒末物体速度多大?2 秒末速度多大?1秒末至 2 秒末这段时间内速度变化量是多大?加速度是多大?A B 名师精编优秀教案A B C 例 3、从公式Rva2看,向心加速度与圆周运动的半径成反比?从公式Ra2看,向心加速度与半径成正比,这两个结论是否矛盾?请从以下两个角度来讨论这个问题。在 y=kx 这个关系式中,说y 与 x 成正比,前提是什么?自行车的大车轮,小车轮,后轮三个轮子的半径不一样,它们的边缘上有三个点A、B、C,其中哪两点向心加速度的关系适用于“向心加速度与半径成正比”,哪两点适用于“向心加速度与半径成反比”?例 4、说法正
3、确的是()A.向心加速度越大,物体速率变化越快B.向心加速度大小与轨道半径成反比。C.向心加速度方向始终与速度方向垂直D.在匀速圆周运动中,向心加速度是恒定的。例 5、关于北京和广州随地球自转的向心加速度,下列说法中正确的是(BD )A、它们的方向都沿半径指向地心B、它们的方向都在平行赤道的平面内指向地轴C、北京的向心加速度比广州的向心加速度大文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB
4、7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C
5、3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB
6、7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C
7、3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB
8、7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C
9、3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8名师精编优秀教
10、案D、北京的向心加速度比广州的向心加速度小四、巩固练习1、一小球被一细绳拴着,在水平面内做半径为R的匀速圆周运动,向心加速度为a,则()A小球的角速度aRB小球在时间t 内通过的路程为staR C小球做匀速圆周运动的周期TRaD小球在时间t 内可能发生的最大位移为2R 2、关于地球上的物体随地球自转的向心加速度的大小,下列说法正确的是()A在赤道上向心加速度最大B在两极向心加速度最大C在地球上各处,向心加速度一样大D随着纬度的升高,向心加速度的值逐渐减小3、如图所示,A、B两轮同绕轴O转动,A 和 C 两轮用皮带传动,A、B、C三轮的半径之比为 2 33,a、b、c 为三轮边缘上的点。求三点的
11、线速度之比;三点转动的周期之比;三点的向心加速度之比。B b c C A a O 文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX
12、4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L
13、8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX
14、4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L
15、8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX
16、4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L
17、8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8名师精编优秀教案4、如图,直杆OB绕 O点转动,当杆上A点速度为V1时,杆上另一点B的速度为 V2,当 B点速度大小增加V时,则 A点速度增加()A、21vvv B、212vvvv C、12vvv D、112vvvv5、如图所示,甲是一个半径为r 的固定在转轴上的轮子,乙是一个
18、支撑起来的中空的轮环,内半径为2r,外半径为3r,甲带动乙转动,接触处不打滑,当甲的角速度为时,轮环外壁N点的线速度是 _ _,轮环外壁N点的向心加速度是_ _.参考答案1、【答案】:ABD【解析】:小球做圆周运动的线速度为v、角速度为,则有 av2RR2,由此可得vaR,aR周期 T22Ra所以小球在时间t 内通过的路程为s v t t aR,小球在时间t 内可能发生的最大位移应该等于直径。综上所述,正确选项为ABD。拓展:角速度、线速度和周期等用来描述物体做圆周运动的快慢,向心加速度描述物体做圆文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7
19、B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3
20、 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7
21、B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3
22、 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7
23、B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3
24、 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7
25、B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8名师精编优秀教案周运动过程中速度方向变化快慢,它们之间有密切的联系。2、【答案】:AD【解析】:地球上的物体随地球一起转动,在任何位置处转动的角速度都与地球自转的角速度相等,由公式a r 2 可以知道,在角速度一定的情况下,向心加速度大小与转动半径成正比关系。所以,在赤道处,物体转动半径即地球半径,其值最大,故其向心加速度最大;在两极,其转动半径为零,所以其向心加速度也为零;随着纬度的升高,其转动半径减小,故其向心加速度也减小。本题正确选项为AD。拓展
26、:地球上各个物体随地球一起转动,它们都是绕地轴转动,而不是绕地球球心转动,所以它们转动的平面与地轴垂直,转动半径与纬度大小有关。如图所示,设地球半径为R,纬度为 的 A处物体转动的半径为r,则有 r Rcos。3、【答案】:2 32;223;69 4【解析】:因 A、B两轮同绕轴O转动,所以有ab;A和 C两轮用皮带传动,所以有 vavc。由公式vr、T 2 rv、av2R结合题中已知条件即可求解。因 A、B两轮同绕轴O转动,所以有 ab,由公式v r 可知va vb(a ra)(b rb)rarb 23 又因为 A和 C两轮用皮带传动,所以有vavc 综上所述可知三轮上a、b、c 三点的线速
27、度之比vavbvc 232;因为 a b,所以有TaTb 因为 vavc,根据 T2rv可得Ta Tcrarc 23 所以三点转动的周期之比TaTbTc223;根据向心加速度公式av2R可得三点的向心加速度之比aa abacaarv2bbrv2ccrv242934369 4。拓展:向心加速度的公式有多种形式,如av2r,ar 2,av,a42r/T2,a42rn2 等,计算时应根据题中给出的条件灵活选用。本题求解时采用的公式是av2r,其实采用其它公式同样可解,大家不妨一试。r R O OA 文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E
28、6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE
29、4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E
30、6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE
31、4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E
32、6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE
33、4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E
34、6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8名师精编优秀教案4、【答案】:C【解析】:本题考察对速度变化量的理解,首先要明确初、末速度(包括大小和方向),和速度变化量的物理意义,并且抓住A、B 两点角速度相同这一点切入。A、B两点 相同,由 v1:v2=OA:OB (v1+v):(v2+v)=OA:OB可得:本题的【答案】为C 5、【答案】:1.5 r 0.752r【解析】:本题讨论皮带传送装置线速度、角速度和周期之间的关系问题。因此首先要抓住传动装置的特点:同轴传动的是角速度相等,皮带传动是两轮边缘
35、的线速度大小相等,再利用v=r 以及向心加速度的公式找关系。甲、乙两轮接触处不打滑;接触处线速度相同,甲轮边缘的线速度v=r,则乙轮环内径 2r 的圆周上各点线速度也为v乙(内)=r,其角速度=rv2=rr2=0.5,乙轮环上各点的角速度相等,则:N点的线速度vN=3r=1.5 r=rrrvN3)5.1(322=0.75 2r【点评】在分析传动装置的各物理量之间的关系时,要首先明确什么量是相等的,什么量是不等的。通常情况下,同轴的各点角速度、转速 n、周期 T 相等,而线速度v=r 与半径成正比。在认为皮带不打滑的情况下,传动皮带与和皮带连接的轮子的边缘的各点的线速度大小相等,而角速度=v/r
36、与半径 r 成反比。齿轮啮合装置同样边缘的各点的线速度大小相等。文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3
37、 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7
38、B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3
39、 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7
40、B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3
41、 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8文档编码:CB7B4E6Y3D1 HX4L5T1R9C3 ZE4R3X4G2L8