实验报告-磁聚焦法测定电子荷质比.doc

上传人:de****x 文档编号:57512108 上传时间:2022-11-05 格式:DOC 页数:14 大小:28KB
返回 下载 相关 举报
实验报告-磁聚焦法测定电子荷质比.doc_第1页
第1页 / 共14页
实验报告-磁聚焦法测定电子荷质比.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《实验报告-磁聚焦法测定电子荷质比.doc》由会员分享,可在线阅读,更多相关《实验报告-磁聚焦法测定电子荷质比.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、实验报告-磁聚焦法测定电子荷质比篇一:电子荷质比的测定(实验报告) 大学物理实验报告 实验名称磁聚焦法测电子荷质比 实验日期 2020-04-24实验人员 袁淳(202002120406) 【实验目的】 1. 理解电子在电场和磁场中的运动规律。 2. 学惯用磁聚焦法测量电子的荷质比。 3. 通过本实验加深对洛伦兹力的认识。 【实验仪器】 FB710电子荷质比测定仪。 【实验原理】 当螺线管通有直流电时,螺线管内产生磁场,其磁感应强度B的方向,沿着螺线管的方向。电子在磁场中运动,其运动方向假如同磁场方向平行,则电子不受任何妨碍;假如电子运动力向与磁场方向垂直,则电子要遭到洛伦兹力的作用,所受洛伦

2、兹力为: F?evB 将运动速度分解成与磁感应强度平行的速度 v/和与磁感应强度垂直的速度v?。v/不受洛伦兹力的妨碍,接着 沿轴线做匀速直线运动。?在洛伦兹力的作用下做匀速圆周运动,其方程为: 2 mv F?evB? r 则 由阴极发射的电子,在加速电压U的作用下获得了动能,依照动能定理, 2 e2U ?则 2m(rB) 保持加速电压U不变,通过改变偏转电流I,产生不同大小磁场,保证电子束与磁场严格垂直,进而测量电子 v e?mrB 1 mv?eU2 束的圆轨迹半径,就能测量电子的 r m值。 32 4?0NIB?()?螺线管中磁感应强度的计算公式以 5R 数=130匝; R为螺线管的平均半

3、径=158mm。得到最终式: 表示,式中?0=4?10 -7 H/m。N是螺线管的总匝 e?125?UR2U12 ?3.65399?10?22?C/kg?2m?32?0NIrIr 测出与U与I相应的电子束半径,即可求得电子的荷质比。 r 【实验步骤】 第 1 页 共 2 页1. 接通电子荷质比测定仪的电源,使加速电压定于120V,至能观察到翠绿色的电子束后,降至100V; 2. 改变偏转电流使电子束构成封闭的圆,缓慢调理聚焦电压使电子束亮堂,缓慢改变电流观察电子束大小和 偏转的变化; 3. 调理电压和电流,产生一个亮堂的电子圆环; 4. 调理仪器后线圈的反光镜的位置以方便观察; 5. 挪动滑动

4、标尺,使黑白分界的中心刻度线对准电子枪口与反射镜中的像,采纳三点不断线的方法分别测出 电子圆左右端点S0和S1,并记录下对应的电压值U和电流值I。 6. 1 ?S1?S0?得到电子圆的半径,代入最终式求出m; 依照r?2 7. 改变U、I得到多组结果,求出平均值,与标准值进展比拟,求出相对误差E 【实验数据】 标准值em=1.758819621011 (C/kg)【数据处理过程】 1. 依照r? 1 ?S1?S0?计算出r2 ,得到每个U和I对应的 r 2. 2U12 m?3.65399?10?22依照 rI 计算出每个m,得到e/m=1.8001011 (C/kg) 3. |m?m| ?10

5、0%=2.346% 将得到的e/m与标准值进展比拟,得到相对误差E= m 电子束与磁场没有严格垂直导致误差; 电子束具有一定宽度,导致测量误差; 测量者利用点一线法测半径时没有完全对齐导致随机误差; 实验仪器准确度不够导致测量误差; 实验理论的不完善(如没有考虑电子的相对论效应)导致误差。 第 2 页 共 2 页 【误差分析】 1. 2. 3. 4. 5.篇二:预习报告-磁聚焦测定荷质比 实 验 预 习 报 告 姓名:张伟楠 同组姓名: 班级:F0703028 实验日期:2020.04.14 学号:5070309108 实验成绩: 指导教师: 批阅日期: 磁聚焦法测定电子荷质比 【原理简述(原

6、理图、主要公式)】 1. 零电场测定电子荷质比 (L2+D2) k=n2lNeUa=k2 mI 2 2. 电场偏转法测定电子荷质比 e8Ua2Ua= =c 【原始数据记录表】 1. 零电场测定电子荷质比 2. 电场偏转法测定电子荷质比 (1)在X偏转板上加交流偏转电压 (2)在Y偏转板上加交流偏转电压 篇三:电子束的偏转与聚焦实验报告 南昌大学物理实验报告 课程名称:一般物理实验(2) 实验名称:电子束的偏转与聚焦 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间: 一、 实验目的: 1、理解示波管的构造和工作原理。 2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用

7、 3、学会标准使用数字多用表。 4、学会磁聚焦法测量电子比荷的方法。 下的偏转情况。 二、 实验仪器: EB电子束实验仪、直流稳压电源30V,2A、数字多用表。 三、 实验原理: 1、示波管的构造 示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1 所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。 2、电聚焦原理 电子射线束的聚焦是电

8、子束管必须处理的咨询题。在示波管中,阴极被加热发 射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。栅极G的电压一般要比阴极K的电压低20100V,由阴极发射电子,遭到栅极与阴极间减速电场的作用,初速度小的电子被阻挠,而那些初速度大的电子能够通过栅极射向荧光屏。因而调理栅极电压的高低能够操纵射向荧光屏的电子数,从而操纵荧光屏上的辉度。当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。加速电极的电压比阴极电位高几百伏至上千伏。前加速阳极,聚焦阳极和第二阳极是由同轴的金属圆筒组成。由于各电极上的电压不同,在它们之间构成了弯

9、曲的等势面、电场线。如此就使电子束的途径发生弯曲,这类似光线通过透镜那样产生了会聚和发散,这种电器组合称为电子透镜。改变电极间的电压分布,能够改变等势面的弯曲程度,从而到达电子束的聚焦。 3、电偏转原理 在示波管中,电子从被加热的阴极K逸出后,由于遭到阳极电场的加速作用, 使电子获得沿示波管轴向的动能。电场力做的功eU应等于电子获得的动能 eU? 1 mv2 2 (1) 显然,电子沿Z轴运动的速度vz与第二阳极A2的电压U2的平方根成正比,即 vz? 2e m U2 (2) 假设在电子运动的垂直方向加一横向电场,电子在该电场作用下将发生横向偏假设偏转板板长为l、偏转板末端到屏的间隔为L、偏转电

10、极间间隔为d、轴向 转,如图2所示。 加速电压(即第二阳极A2电压)为U2,横向偏转电压为Ud,则荧光屏上光点的横向偏转量D由下式给出: lUdl 2U22d D?(L?) (3) 由式(3)可知,当U2不变时,偏转量D随Ud的增加而线性增加。因而,依照 屏上光点位移与偏转电压的线性关系,能够将示波管做成测量电压的工具。假设改变加速电压U2,适当调理U1到最正确聚焦,能够测定D-Ud直线随U2改变而使斜率改变的情况。 4、磁偏转原理 电子通过A2后,假设在垂直Z轴的X方向外加一个均匀磁场,那么以速度v飞越 子电子在Y方向上也会发生偏转,如下图。 由于电子受洛伦兹力F=eBv作用,F的大小不变,

11、方向与速度方向垂直,因而电子在F的作用下做匀速圆周运动,洛伦兹力确实是向心力,即有eBv=mv2/R,因而 R? mvz eB (4) 电子离开磁场后将沿圆切线方向飞出,直射到达荧光屏。在偏转角较小的情况下,近似的有 tan? lD? RL (5) 式中,l为磁场宽度,D为电子在荧光屏上亮点的偏转量(忽略荧光屏的微小由此可得偏转量D与外加磁场B、加速电压U2等的关系为 弯曲),L为从横向磁场中心到荧光屏的间隔。 D?lBL e 2mU2 (6) 实验中的外加横向磁场由一对载流线圈产生,其大小为 B?K?0nI (7) 式中,?0为真空中的磁导率,n为单位长度线圈的匝数,I为线圈中的励磁电 流,

12、K为线圈产生磁场公式的修正系数(0?K?1) 由此可得偏转量D与励磁电流I、加速电压U2等的关系为 D?K?0nIlL e 2mU2 (8) 当励磁电流I(即外加磁场B)确定时,电子束在横向磁场中的偏转量D与加 速电压U2的平方根成反比。 5、磁聚焦和电子荷质比的测量原理 带点粒子的电量与质量的比值叫荷质比,是带电微观粒子的根本参量之一。电子运动方向与磁场平行,故磁场对电子运动不产生妨碍。电子流的轴线速 测定荷质比的方法非常多,本实验采纳磁聚焦法。 率为 v/? 2eU2 m (9) 式中,e,m分别为电子电荷量和质量。假设在一对偏转极板Y上加一个幅值不 大的交变电压,则电子流通过Y后就获得一

13、个与管轴垂直分量v?。如暂不考虑电子轴向速度分量v/的妨碍,则电子在磁场的洛伦兹力F的作用下(该力与v?垂直),在垂直于轴线的平面上作圆周运动,即该力起着向心力的作用,F=ev?B=mv2?/R,由此可得到电子运动的轨道半径R?动一周所需要的时间(即周期)为 v? ,v?越大轨道半径亦越大,电子运 Be/m T? 2?Re ?2?B v?m (10) 这说明电子的旋转周期与轨道半径及速率v?无关。假设再考虑v/的存在,电子 的运动轨迹应为一螺旋线。在一个周期内,电子前进间隔(称螺距)为 h?v/T? 2? 2mU2 Be (11) 由于不同时刻电子速度的垂直分量v?度不同,故在磁场的作用下,各

14、电子将 沿不同半径的螺线前进。然而,由于他们速度的平行分量v/均一样,因而电子在做螺线运动时,它们从同一点出发,尽管各个电子的v?各不一样,但通过一个周期后,它们又会在间隔出发点相距一个螺距的地点重新相遇,这确实是磁聚焦的根本原理。由式(11)可得 m?8?2U2h2B2 (12) 长直螺线管的磁感性强度B,能够由下式计算: B? ?0NIL?D 2 2 (13) 将式(13)代入式(12),可得电子荷质比为: m?8?2U2(L2D2?0NIh)2 e?k (14) m 式中 U2 2I (15) 8?2(L2?D2) k?2 (?0Nh) (16) 本实验使用的电子束实验仪,k=4.8527?108此材料由网络搜集而来,如有侵权请告知上传者立即删除。材料共分享,我们负责传递知识。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁