《2021-2022学年京改版八年级数学下册第十四章一次函数同步练习试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十四章一次函数同步练习试卷(含答案解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十四章一次函数同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点P的坐标为(3,2),则点P位于( )A第一象限B第二象限C第三象限D第四象限2、下列各图中,不能表示y是x的
2、函数的是( )ABCD3、如图,图中的函数图象描述了甲乙两人越野登山比赛(x表示甲从起点出发所行的时间,表示甲的路程,表示乙的路程)下列4个说法:越野登山比赛的全程为1000米;甲比乙晚出发40分钟;甲在途中休息了10分钟;乙追上甲时,乙跑了750米其中正确的说法有( )个A1B2C3D44、已知一次函数y1kx+1和y2x2当x1时,y1y2,则k的值可以是( )A3B1C2D45、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为()A2B-1C-2D46、已知点(4,y1)、(2,y2)都在直线yx+b上,则y1和y2的大小关系是( )Ay1y2By1y2Cy1y2D无法确定7
3、、在ABC中,ABAC,点B,点C在直角坐标系中的坐标分别是(2,0),(2,0),则点A的坐标可能是( )A(0,2)B(0,0)C(2,2)D(2,2)8、直线yax+a与直线yax在同一坐标系中的大致图象可能是()ABCD9、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )ABC3D10、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:甲的速度为40千米/时;乙的速度始终为50千米/时;行驶1小时时,乙在甲前10千米处;甲、乙两名运动员相距5千米时,t
4、=05或t =2或t =4,其中正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知A(6,0)、B(3,1),点P在y轴上,当y轴平分APB时,点P的坐标为_2、已知自变量为x的函数y=mx+2-m是正比例函数,则m=_ 3、某长途汽车客运公司规定旅客可免费携带一定质量的行李当行李的质量超过规定时,需付的行李费(元)与行李质量之间满足一次函数关系,部分对应值如下表:304050(元)468则旅客最多可免费携带行李的质量是_kg4、任何一个以x为未知数的一元一次不等式都可以变形为_(a0)的形式,所以解一元一次不等式相当于在某个一次函数_的值
5、大于0或小于0时,求_的取值范围5、甲、乙两施工队分别从两端修一段长度为380米的公路在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务下表根据每天工程进度绘制而成的施工时间/天123456789累计完成施工量/米3570105140160215270325380下列结论:甲队每天修路20米;乙队第一天修路15米;乙队技术改进后每天修路35米;前7天甲、乙两队修路长度相等其中正确的结论有_(填序号)三、解答题(5小题,每小题10分,共计50分)1、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元)为吸引客源
6、,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)在直角坐标系内画出这个函数图象;(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?2、已知函数y=(k-3)xk+2是
7、正比例函数,求代数式k2-1的值3、多多和爸爸、妈妈周末到白银市金鱼公园动物园游玩,回到家后,她利用平面直角坐标系画出了白银市金鱼公园动物园的景区地图,如图所示可是她忘记了在图中标出原点、x轴和y轴,只知道东北虎的坐标为请你帮她画出平面直角坐标系,并写出其他各景点的坐标4、在平面直角坐标系中,且a,b满足,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点:(1)如图1,若,求的面积;(2)如图1,若,且,求D点的坐标;(3)如图2,若,以为边,在的右侧作等边,连接,当最短时,求A,E两点之间的距离;5、已知直线l1:y-xb与x轴交于点A,直线l2:yx与x轴交于点B,直线l1、l2交与点C
8、,且C点的横坐标为1(1)求直线l1的解析式;(2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CPPQQA的值最小时,求此时点P的坐标;(3)E点的坐标为(2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由-参考答案-一、单选题1、B【解析】【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可【详解】解:点P的坐标为(3,2),则点P位于第二象限故选:B【点睛】
9、此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负2、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选
10、项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键3、C【解析】【分析】根据终点距离起点1000米即可判断;根据甲、乙图像的起点可以判断;根据AB段为甲休息的时间即可判断;设乙需要t分钟追上甲,求出t即可判断【详解】解:由图像可知,从起点到终点的距离为1000米,故正确;根据图像可知甲出发40分钟之后,乙才出发,故乙比甲晚出发40分钟,故错误;在AB段时,甲的路程没有增
11、加,即此时甲在休息,休息的时间为40-30=10分钟,故正确;乙从起点到终点的时间为10分钟,乙的速度为100010=100米/分钟,设乙需要t分钟追上甲,解得t=7.5,乙追上甲时,乙跑了7.5100=750米,故正确;故选C【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像4、B【解析】【分析】先求出不等式的解集,结合x1,即可得到k的取值范围,即可得到答案【详解】解:根据题意,y1y2,解得:,;,当x1时,y1y2,;k的值可以是1;故选:B【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算5、C【解析】【分析】首
12、先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可【详解】解:由题意得:x=1时,y=k+3,在x=1处,自变量增加2,函数值相应减少4,x=3时,函数值是k+3-4,3k+3=k+3-4,解得:k=-2,故选C【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值6、A【解析】【分析】由题意直接根据一次函数的性质进行分析即可得到结论【详解】解:直线yx+b中,k0,y将随x的增大而减小42,y1y2故选:A【点睛】本题考查一次函数的图象性质,注意掌握
13、对于一次函数y=kx+b(k0),当k0,y随x增大而增大;当k0时,y将随x的增大而减小7、A【解析】【分析】由题意可知BOCO,又ABAC,得点A在y轴上,即可求解【详解】解:由题意可知BOCO,又ABAC,AOBC,点A在y轴上,选项A符合题意,B选项三点共线,不能构成三角形,不符合题意;选项C、D都不在y轴上,不符合题意;故选:A【点睛】本题考查了平面直角坐标系点的特征,解题关键是分析出点A的位置8、D【解析】【分析】若y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限
14、,与y轴的交点在y轴负半轴,则可对C、D进行判断【详解】解:A、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;B、y=ax过第一、三象限,则a0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;C、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;D、y=ax过第二、四象限,则a0,-a0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;故选D【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k0)的图象为一条直线,当k
15、0,图象过第一、三象限;当k0,图象过第二、四象限;直线与y轴的交点坐标为(0,b)9、D【解析】【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-20,解之即可得出m2,进而可得出m=-3【详解】解:一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),m2-3=6,即m2=9,解得:m=-3或m=3又y的值随着x的值的增大而减小,m-20,m2,m=-3故选:D【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质
16、,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键10、D【解析】【分析】分析图像上每一段表示的实际意义,再根据行程问题计算即可【详解】甲的速度为,故正确;时,已的速度为,后,乙的速度为,故错误;行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;由得:甲的函数表达式为:,已的函数表达为:时,时,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距为,故正确故选:D【点睛】本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解二、填空题1、【解析】【分析】当y轴平分APB时
17、,点A关于y轴的对称点A在BP上,利用待定系数法求得AB的表达式,即可得到点P的坐标【详解】解:如图,当y轴平分APB时,点A关于y轴的对称点A在BP上,A(6,0),A (-6,0),设AB的表达式为y=kx+b,把A (-6,0),B(3,1)代入,可得,解得,令x=0,则y=2,点P的坐标为(0,2),故答案为:(0,2)【点睛】本题主要考查了坐标与图形性质,掌握轴对称的性质以及待定系数法是解决问题的关键2、2【解析】【分析】根据正比例函数的定义可得答案【详解】解:已知自变量为x的函数y=mx+2-m是正比例函数,m0,2m0,m2,故答案为:2【点睛】解题关键是掌握正比例函数的定义,解
18、题关键是明确正比例函数为ykx的形式,其中k为常数且k0,自变量次数为13、10【解析】【分析】利用待定系数法求一次函数解析式,令y=0时求出x的值即可【详解】解:y是x的一次函数,设y=kx+b(k0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:,函数表达式为y=0.2x-2,当y=0时,0=0.2x-2,解得x=10,旅客最多可免费携带行李的质量是10kg,故答案为:10【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量4、 ax+b0或ax+b0或ax+b0或ax+b0;y=ax+b;自变量【点睛】本题考查了一次函数与一元一
19、次不等式:从函数的角度看,就是寻求使一次函数y=kx+b(k0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b(k0)在x轴上(或下)方部分所有的点的横坐标所构成的集合5、【解析】【分析】根据表格数据准确分析分析计算即可;【详解】由表格可以看出乙队是第五天停工的,所以甲队每天修路:(米),故正确;乙队第一天修路(米),故正确;乙队技术改进之后修路:(米),故正确;前7天,甲队修路:(米),乙队修路:,故错误;综上所述,正确的有故答案是:【点睛】本题主要考查了行程问题的实际应用,准确分析判断是解题的关键三、解答题1、(1)三人间8间,双人间13间;(2)(
20、50x),y10x+1750(0x50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x48时费用1270元【解析】【分析】分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;根据收费列出表达式整理即可;因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数【详解】解:(1)设租住三人间m间,双人间n间,根据题意,解得,三人间8间,双人间13间;(2)双人间住了(50x)人,根据题意y50x+70(50x)50%即y10x+1750(0x50,且x为整数);(3)因为两种房间正好住满所以x的值为3
21、的倍数而(50x)还是2的倍数因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x48时费用1270元【点睛】本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意2、0【解析】【分析】根据正比例函数y=kx的定义条件:k为常数且k0,自变量指数为1,得出k值,代入代数式求解即可【详解】解:函数y=(k-3)xk+2是正比例函数,k+2=1且k-30,解得:
22、k=-1,k2-1=(-1)2-1=0【点睛】本题考查了正比例函数的定义,熟知正比例函数的定义是解题关键3、两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【解析】【分析】先利用东北虎的坐标找到坐标原点,然后以坐标原点建系,进而找出其他景点的坐标【详解】解:由东北虎的坐标可知:坐标原点即为南门,以南门为坐标原点建系,如下图所示:故:两栖动物的坐标为(4,1),飞禽的坐标为(3,4),非洲狮的坐标为(,5)【点睛】本题主要是考查了写出直角坐标系中的点的坐标,解题的关键通过已知条件,找到坐标原点,进而才能求出其他点的坐标4、 (1)的面积为12;(2) D点的坐标为-2,
23、0;(3) A,E两点之间的距离为【解析】【分析】(1)利用完全平方式和绝对值的性质求出a, b,然后确定A、B两点坐标,从而利用三角形面积公式求解即可;(2)根据题意判断出CBDDAE,从而得到CB= AD,然后利用勾股定理求出CB,即可求出结论;(3)首先根据已知推出DCBECA ,得到DBC=EAC=120,进一步推出AEBC ,从而确定随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,再根据点到直线的最短距离为垂线段的长度,确定OE最短时,各点的位置关系,最后根据含30角的直角三角形的性质求解即可【详解】解: (1) :a+b2+b+3=0,由非负性可知:a+b=0b+3=0
24、,解得:a=3b=-3 A(3,0), B(-3,0), AB=3-(-3)=6, C(0,4),OC=4,SABC=12ABOC=1264=12;(2)由(1)知A(3,0), B(-3,0),OA=OB,OCAB,AOC=BOC=90,在AOC和BOC中,OA=OBAOC=BOCOC=OC ,AOCBOCSAS ,CBO=CAO,CDA=CDE +ADE=BCD+CBA,CBA=CDE,ADE=BCD,在BCD和ADE中,BCD=ADECBD=DAEBD=AE ,BCDADEAAS,CB= AD, B(-3,0), C(0,4),OB=3,OC=4, BC=OB2+OC2=5 ,AD=BC
25、=5,A(3,0),D(-2,0);(3)由(2) 可知CB=CA,CBA=60,ABC为等边三角形,BCA=60, DBC=120,CDE为等边三角形,CD=CE,DCE=60,DCE=DCB+BCE,BCA=BCE+ECA,DCB=ECA,在DCB和ECA中,CD=CEDCB=ECACB=CA ,DCBECA( SAS),DBC=EAC= 120,EAC+ACB= 120+60= 180,AEBC,即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,要使得OE最短,如图所示,当OEPQ时,满足OE最短,此时OEA=90,DBC=EAC=120,CAB=60,OAE=EAC-CAB
26、=60,AOE= 30, A(3,0),OA=3,AE=12OA=32 当OE最短时,A,E两点之间的距离为【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使全等三角形的判定与性质是解题关键5、(1);(2)点的坐标;(3)点的坐标为或,或【解析】【分析】(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;(2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;(3)当点在直线上方,画出图形,证明,利用,即可求解当点在直线下方时,同的方法即可得出结论如图2中,当
27、点在轴的右侧,是等腰直角三角形时,同法可得结论【详解】解:(1)当时,即点的坐标为,将点的坐标代入直线得:,解得:,故:直线的解析式为:;(2)确定点关于过点垂线的对称点、点关于轴的对称点,连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:将点、点的坐标代入一次函数表达式:得:,解得:,则直线的表达式为:,当时,即点的坐标为,的值,即:当的值最小为时,此时点的坐标;(3)将、点坐标代入一次函数表达式,同理可得其表达式为当点在直线上方时,设点,点,点,过点、分别作轴的平行线交过点与轴的平行线分别交于点、,即,解得故点的坐标为,当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,同的方法得,如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得即:点的坐标为,或,【点睛】本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点