《2022年最新北师大版八年级数学下册第三章图形的平移与旋转同步测评试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第三章图形的平移与旋转同步测评试卷(无超纲带解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到ABC,则点P的坐标是()A(4,5)B(4,4
2、)C(3,5)D(3,4)2、将点P(2,1)以原点为旋转中心,顺时针旋转90得到点P,则点P的坐标是()A(2,1)B(2,1)C(1,2)D(1,2)3、下列图形中,是中心对称图形的是( )ABCD4、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是()ABCD15、下列图形既是中心对称图形,又是轴对称图形的是( )ABCD6、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D1207、下列四个图形中既是中心对称图形又是轴对
3、称图形的是( )ABCD8、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)9、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD10、下列图形中,是中心对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_2、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_3、如图,P为等边ABC的边BC上
4、任一点,点D在BA的延长线上,将线段PD绕点P逆时针旋转60得线段PE,连BE,则CBE_4、如图,在RtABC中,ACB90,BAC30,BC6,将ABC绕点C顺时针旋转30得到ABC,A、B分别与A、B对应,CA交AB于点M,则CM的长为 _5、已知矩形ABCD中,AD5,AB3,现将边AD绕它的一个端点旋转,当另一端点怡好落在边BC所在直线的点E处时,线段DE的长度为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在等腰直角中,点D,E在边BC上,且,将绕点A逆时针旋转90得到,连接EF(1)求证:(2)若,求CE2、如图,在直角坐标系中按要求作图,所画图形的顶点必须与每个小
5、正方形的顶点重合(1)画出一个面积等于9的等腰直角三角形ABC,使ABC的三个顶点在坐标轴上,且ABC关于y轴对称,其中点A的坐标为(0,3);(点B在点C的左侧)(2)将ABC向下平移3个单位,再向右平移1个单位得到A1B1C1(点A、B、C的对应点分别为点A1、B1、C1),画出A1B1C1,并直接写出A1C的长3、如图,点O为上一点,过点O作射线,使,将一个含的直角三角板的一个顶点放在O处,斜边与直线重合,另外两条直角边都在直线的下方(1)将图1中的三角板绕着O逆时针旋转,如图2所示,此时 (2)接着将图2中的三角形绕点O逆时针继续旋转到图3的位置所示,使在的内部,请探究:与的数量关系,
6、并说明理由;(3)将图1中的三角板绕点O按每秒的速度沿逆时针方向旋转一周,在旋转过程中,旋转到多少秒时,4、如图,正方形网格中,每一个小正方形的边长都是1个单位长度,在平面直角坐标系内,ABC的三个顶点坐标分别为A(1,1),B(3,2),C(2,4)(1)画出ABC关于原点O对称的,直接写出点的坐标;(2)画出ABC绕点O逆时针旋转90后的,并写出点的坐标5、如图,在平面直角坐标系中,直角的三个顶点分别是,(1)将以点为旋转中心顺时针旋转,画出旋转后对应的并写出各个顶点坐标;(2)分别连结,后,求四边形的面积-参考答案-一、单选题1、B【分析】对应点的连线段的垂直平分线的交点,即为所求【详解
7、】解:如图,点即为所求,故选:B【点睛】本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心2、D【分析】如图,作PEx轴于E,PFx轴于F利用全等三角形的性质解决问题即可【详解】解:如图,作PEx轴于E,PFx轴于F PEOOFPPOP90,POE+POF90,POF+P90,POEP,OPOP,POEOPF(AAS),OFPE1,PFOE2,P(1,-2)故选:D【点睛】本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题3、A【详解】解:A、是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对
8、称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键4、C【分析】先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可【详解】解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,
9、共3个;则P(中心对称图形);故选:C【点睛】本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键5、D【分析】一个图形绕着某固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,这个固定点叫做对称中心;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这两个概念逐项判断即可【详解】A、既不是中心对称图形,也不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、是中心对称图形,但不是轴对称图形,故不符合题意;D、既是中心对称图形,也是轴对称图形,故符合题意
10、【点睛】本题考查了中心对称图形与轴对称图形的识别,掌握它们的概念是关键6、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数7、D【分析】根据轴对称图形与中心对称图形的概念,并结合选项中图形的特点即可选择【详解】解:A、是轴对称图形,不是中心对称图形,故该选项不符合题意;B、不是轴对称图形,是中心对称图形,故该选项不符合题意;C、是轴对称图形,不是
11、中心对称图形,故该选项不符合题意;D、是轴对称图形,是中心对称图形,故该选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180后与原图重合8、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此
12、题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小9、C【详解】解:选项A中的图形是轴对称图形,不是中心对称图形,故A不符合题意;选项B中的图形既不是轴对称图形,也不是中心对称图形,故B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形与中心对称图形的识别,轴对称图形的定义:把一个图形沿
13、某条直线对折,直线两旁的部分能够完全重合;中心对称图形的定义:把一个图形绕某点旋转后能够与自身完全重合;掌握定义是解本题的关键.10、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.二、填空题1、9【分析】根据关于原点对称点的坐标特征求出、的值,再代入计算
14、即可【详解】解:点与点关于原点成中心对称,即,故答案为:9【点睛】本题考查关于原点对称的点坐标特征,解题的关键是掌握关于原点对称的点坐标特征,即纵坐标互为相反数,横坐标也互为相反数2、故答案为: 【点睛】本题考查了平移的性质,掌握平移的性质是解题的关键3【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键3、120【分析】过点D作DFAC交BC延长线于点F,根据等边三角形的性质,利用SAS证明EDBPDF即可求解【详解】解:过点D作DFAC交BC延长线于
15、点F,如图:ABC是等边三角形,ABC=BAC=BCA=60,BAC=BDF=BCA=F=60,DBF是等边三角形,DB=DF,将线段PD绕点P逆时针旋转60得线段PE,PDE是等边三角形,DE=DP,EDP=60,EDB+BDP=PDF+BDP=60,EDB=PDF,EDBPDF(SAS),EBD=F=60,CBE=ABC+EBD=120,故答案为:120【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键4、【分析】根据旋转的性质可得,所以,由题意可得:,为等边三角形,即可求解【详解】解:,由旋转的性质可得,为等边三角形,故答案为:【点睛
16、】此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解5、2或3或5【分析】分两种情形:AD=AE,DE=DA,利用勾股定理分别求解即可【详解】解:如图,四边形ABCD是矩形,AB=CD=3,AD=BC=5,ABC=DCB=90,当AD=5时,=4,DE1=2,=24+1=9,DE2=3,当DE=DA=5时,DE=5,综上所述,满足条件的DE的值为2或3或5故答案为:2或3或5【点睛】本题考查了旋转变换,矩形的性质,等腰三角形的性质,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型三、解答题1、(1)见解析;(2)
17、3【分析】(1)根据旋转的性质,可得BAD=CAF,AD=AF,再由,可得EAF=45,从而得到EAF=DAE,进而得到DAEFAE,即可求证;(2)根据旋转的性质,可得B=ACF,CF=BD=4,再由等腰直角三角形的性质可得B=ACB=45,从而得到ACF=45, ,进而得到ECF=90,再由,可得EF=8-CE,然后在 中,由勾股定理,即可求解【详解】解:(1)将绕点A逆时针旋转90得到,BAD=CAF,AD=AF,BAD+CAE=BAC-DAE=45,CAF+CAE=BAC-DAE=45,即EAF=45,EAF=DAE,AE=AE,DAEFAE,DE=EF;(2)将绕点A逆时针旋转90得
18、到,B=ACF,CF=BD=4,在等腰直角中,B=ACB=45,ACF=45, ,ECF=ACB+ACF=90,BD=4,DE+CE=8,DE=EF,EF+CE=8,EF=8-CE,在 中, , ,解得: 【点睛】本题主要考查了全等三角形的判定和性质,图形的旋转,勾股定理,等腰直角三角形的性质,熟练掌握相关知识点是解题的关键2、(1)见解析;(2)画图见解析,A1C的长为4【详解】解:(1)如图,ABC即为所求AO=BO=CO=3,且AOBC,BAO=CAO=45,ABC的面积=BCAO=9,BAC=90,且ABC关于y轴对称;(2)如图,A1B1C1即为所求如图,A1C的长为4【点睛】本题考
19、查了根据平移变换作图以及等腰直角三角形的判定和性质,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接3、(1)90;(2)+=135,理由见解析 (3)15或55秒【分析】(1)利用旋转的性质可得DON的度数,根据平角的性质即可求解;(2)利用NOM45与COD=180即可可判断与的数量关系;(3)在旋转的过程中,COM与CON互补,可求出ON旋转67.5或247.5,即可得出结果【详解】解:(1),DOB=45COD=180旋转90DON=90180-DON=90故答案为:90;(2)+=135,理由如下:NOM45,COD=180+=COD-NOM=135即+=135;(3)当O
20、M、ON都在OC右侧时,COMCON2COM45180, COM67.5,故旋转的度数BOM=BOC-COM67.5时间为:67.54.515s;当OM、ON都在OC左侧,COMCON2CON45180,CON67.5,旋转的度数为COD+CON247.5时间为:247.54.555,故旋转到15或55秒时,【点睛】本题考查了等腰直角三角形的性质、角度的和差关系、旋转的性质等知识,熟练掌握三角板的特点以及旋转的性质是解题的关键4、(1)作图见解析,(-1,1);(2)作图见解析,(-1, 1),(-2, 3),(-4, 2);【分析】(1)根据A(1,1),B(3,2),C(2,4)即可画出A
21、BC关于原点O对称的的A1B1C1,进而可以写出点A1的坐标;(2)根据旋转的性质即可画出ABC绕点O逆时针旋转90后的A2B2C2;进而可以写出点的坐标即可【详解】解:(1)如图,A1B1C1即为所求, 所以点A1的坐标为:(-1,1);(2)A2B2C2即为所求;点的坐标分别为:(-1, 1),(-2, 3),(-4, 2);【点睛】本题考查了作图旋转变换和中心对称变换,解决本题的关键是掌握旋转的性质5、(1)图见解析,;(2)9【分析】利用网格特点和旋转的性质画出、的对应点、,从而得到;利用两个梯形的面积和减去一个三角形的面积计算四边形的面积【详解】解:如图,为所作,各个顶点坐标为,;如图,四边形的面积【点睛】本题考查了作图旋转变换,根据旋转的性质画出转后对应的是解决问题的关键