2022年最新京改版九年级数学下册第二十五章-概率的求法与应用重点解析试题(含答案解析).docx

上传人:可**** 文档编号:57438293 上传时间:2022-11-05 格式:DOCX 页数:19 大小:187.17KB
返回 下载 相关 举报
2022年最新京改版九年级数学下册第二十五章-概率的求法与应用重点解析试题(含答案解析).docx_第1页
第1页 / 共19页
2022年最新京改版九年级数学下册第二十五章-概率的求法与应用重点解析试题(含答案解析).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022年最新京改版九年级数学下册第二十五章-概率的求法与应用重点解析试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新京改版九年级数学下册第二十五章-概率的求法与应用重点解析试题(含答案解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十五章 概率的求法与应用重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的

2、小球是黑色的概率是()ABCD2、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为( )ABCD3、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( )ABCD4、同时抛掷两枚质地均匀的硬币,出现两个正面朝上的概率是()ABCD5、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:抛掷次数m5001000150020002500300040005000“正面向上”的次数n26551279310341306155820832598“正面向上”的频率0

3、.5300.5120.5290.5170.5220.5190.5210.520下面有3个推断:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次其中所有合理推断的序号是( )ABCD6、在一个不透明的布袋中装有红色,白色玻璃球共40个,除颜色外其他完全相同小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可

4、能有( )A4个B6个C34个D36个7、抛掷一枚质地均匀的散子(骰子六个面上分别标有1,2,3,4,5,6六个点数),则骰子面朝上的点数大于4的概率是()ABCD8、 “十一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品下表是该活动的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”区域的次数m68108140355560690落在“铅笔”区域的频率0.680.720.700.710.700.69下列说法错误的是( )A转动转盘20次,一定有

5、6次获得“文具盒”铅笔文具盒B转动转盘一次,获得“铅笔”的概率大约是0.70C再转动转盘100次,指针落在“铅笔”区域的次数不一定是68次D如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次9、养鱼池养了同一品种的鱼,要大概了解养鱼池中的鱼的数量,池塘的主人想出了如下的办法:“他打捞出80尾鱼,做了标记后又放回了池塘,过了三天,他又捞了一网,发现捞起的90尾鱼中,带标记的有6尾”你认为池塘主的做法( )A有道理,池中大概有1200尾鱼B无道理C有道理,池中大概有7200尾鱼D有道理,池中大概有1280尾鱼10、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率

6、是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个口袋中装有6个红球和若干白球,小球除颜色外其他都相同,从口袋中随机摸出一球,记下颜色再把它放回袋中,不断重复上述实验210次,其中红球出现了70次,请问口袋中大约有_个白球2、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n_3、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程整理数据后

7、,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_4、在一个不透明的盒子中装有黑球和白球共200个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则盒子中的白球有_5、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_三、解答题(5小题,每小题10分,共计50分)1、现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球

8、小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小华获胜;若颜色不同,则小林获胜请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平,如果不公平,谁获胜的机会大2、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片

9、是“化学、政治”的概率3、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.88314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是_,那么成活率是_(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一

10、定的稳定性,可以估计树苗成活的概率是_(3)若小王移植10000棵这种树苗,则可能成活_;(4)若小王移植20000棵这种树苗,则一定成活18000棵此结论正确吗?说明理由4、某校计划在暑假第二周的星期一至星期五开展社会实践活动,要求每位学生选择两天参加活动(1)甲同学随机选择两天,其中一天是星期五的概率是多少?(2)乙同学随机选择连续的两天,其中一天是星期五的概率是多少?5、如图,转盘黑色扇形和白色扇形的圆心角分别为120和240(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率(注:当指针恰好指在分界线上时

11、,无效重转)-参考答案-一、单选题1、B【分析】用黑色的小球个数除以球的总个数即可解题【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率2、D【分析】直接利用概率公式求出即可【详解】解:共四名候选人,男生3人,选到男生的概率是:故选:D【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比3、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列

12、表如下:跳坐握跳(跳,跳)(跳,坐)(跳,握)坐(坐,跳)(坐,坐)(坐,握)握(握,跳)(握,坐)(握,握)由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键4、B【分析】画树状图展示所有4种等可能的结果数,再找出两枚硬币全部正面向上的结果数,然后根据概率公式求解【详解】解:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率故答案为,故选:B【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结

13、果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率5、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案【详解】解:当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次正确;故选:C【点睛】本题考

14、查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答6、B【分析】由频数=数据总数频率计算即可【详解】解:摸到红色球的频率稳定在15%左右,口袋中红色球的频率为15%,故红球的个数为4015%=6(个)故选B【点睛】本题考查了利用频率估计概率,难度适中大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率7、B【分析】由题意根据掷得面朝上的点数大于4情况有2种,进而求出概率即可【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于4的情况有2种,掷得面朝上的

15、点数大于4的概率是.故选:B【点睛】本题考查概率的求法,注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=8、A【分析】根据图表可求得指针落在铅笔区域的概率,另外概率是多次实验的结果,因此不能说转动转盘20次,一定有6次获得“文具盒”铅笔文具盒【详解】解:由题表中的信息得,落在“铅笔”区域的频率稳定在0.7左右,根据用频率估计概率,得:A、转动转盘20次,可能有6次获得“文具盒”铅笔文具盒,故本选项错误,符合题意;B、转动转盘一次,获得铅笔的概率大约是0.70,故本选项正确,不符合题意;C、再转动转盘100次,指针落在“铅笔”区域的次数

16、不一定是68次,故本选项正确,符合题意;D、如果转动转盘3000次,指针落在“文具盒”区域的次数大约有次,故本选项正确,不符合题意;故选:A【点睛】本题考查了利用频率估计概率,解题的关键是理解大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率9、A【分析】设池中大概有鱼x尾,然后根据题意可列方程,进而问题可求解【详解】解:设池中大概有鱼x尾,由题意得:,解得:,经检验:是原方程的解;池塘主的做法有道理,池中大概有1200尾鱼;故选A【点睛】本题主要考查分式方程的应用及概率,熟练

17、掌握分式方程的应用及概率是解题的关键10、B【分析】由题意,只要求出阴影部分与矩形的面积比即可【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:;故选:B【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性用到的知识点为:概率=相应的面积与总面积之比二、填空题1、12【分析】红球的概率可利用已知条件求出,再利用概率公式列出方程,即可求解【详解】解:设有x个白球,由题意得:,解得x=

18、12故答案为:12【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=关键是根据红球的频率得到相应的等量关系2、【分析】根据概率公式计算即可【详解】共有个球,其中黑色球个从中任意摸出一球,摸出黑色球的概率是解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键概率=所求情况数与总情况数之比3、【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2【点睛】本题主要考查用

19、频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率4、40【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率【详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,摸到白球的概率约为0.2白球的个数=2000.2=40个故答案为:40【点睛】本题主要考查了利用频率估计概率,熟知大量反复试验下频率稳定值即概率是解题的关键5、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案【详解】解:设黄球的个数为x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程

20、的解,黄球的个数为1个故答案为:1【点睛】此题考查了分式方程的应用,以及概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比三、解答题1、不公平,小林获胜的机会大【分析】根据题意列出图表得出所有等可能的结果数和颜色相同和不同的结果数,然后根据概率公式求出各自的概率,再进行比较即可得出这个游戏是否公平【详解】解:列表如下:由上表或可知,一共有9种等可能的结果,其中颜色相同的结果有4种,颜色不同的结果有5种P(颜色相同)=,P(颜色不同)=,这个游戏规则对双方不公平,小林获胜的机会大【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平

21、用到的知识点为:概率=所求情况数与总情况数之比2、【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即3、(1)6335;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移

22、植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,成活率,故答案为:6335;0.905;(2)解:大量重复试验下,频率的稳定值即为概率值,可以估计树苗成活的概率是0.900,故答案为:0.900;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这

23、种树苗,则一定成活18000棵此结论不正确,理由如下:概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率4、(1);(2)【分析】(1)由树状图得出共有20个等可能的结果,其中有一天是星期二的结果有8个,由概率公式即可得出结果;(2)乙同学随机选择连续

24、的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五);其中有一天是星期五的结果有1个,由概率公式即可得出结果【详解】解:(1)根据题意画图如下:由树状图可知,共有20个等可能的结果,甲同学随机选择两天,其中有一天是星期五的结果有8个,甲同学随机选择两天,其中有一天是星期五的概率为;(2)乙同学随机选择连续的两天,共有4个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),其中有一天是星期五的结果有1个,即(星期四,星期五),乙同学随机选择连续的两天,其中有一天是星期五的概率是【点睛】此题考查的

25、是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比5、(1);(2)见解析,【分析】(1)将120作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得【详解】解:(1)将120作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是;(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,画树状图得: 由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁