《2021-2022学年人教版八年级数学下册第十七章-勾股定理专项练习试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年人教版八年级数学下册第十七章-勾股定理专项练习试题.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十七章-勾股定理专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,已知点A(2,5),点B(1,1),则线段AB的长度为( )A2B3C4D52、下列长度的
2、线段能组成直角三角形的是( )A3,4,6B3,4,5C6,8,9D5,12,143、下列三个数为边长的三角形不是直角三角形的是( )A3,3,B4,8,C6,8,10D5,5,4、满足下列条件的ABC,不是直角三角形的是()AA:B:C5:12:13Ba:b:c3:4:5CCABDb2a2c25、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得米,在点C正上方找一点D(即),测得,则景观池的长AB为( )A5米B6米C8米D10米6、如图,在RtABC中,CBA60,斜边AB10,分别以ABC的三边长为边在AB上方作正方形,S1,S2,S3,S4,S5分别表示对应阴影部分的面积,
3、则S1+S2+S3+S4+S5()A50B50C100D1007、满足下列条件的ABC不是直角三角形的是()ABC1,AC2,ABBCBC:AC:AB3:4:5DA:B:C3:4:58、如图,在ABC中,A90,AB6,BC10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PAPB的最小值是( )A6B8C10D129、如图,在ABC中,已知ABAC3,BC4,若D,E是边BC的两个“黄金分割”点,则ADE的面积为()A104B35CD20810、以下列长度的三条线段为边,能组成直角三角形的是( )A4,5,6B8,15,17C2,3,4D1,3第卷(非选择题 70分)二、填空题(5小
4、题,每小题4分,共计20分)1、如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A沿侧面爬到点B处吃食,要爬行的最短路程是_cm2、如图,在每个小正方形的边长为1的网格中,点,均落在格点上()的大小为_(度);()请在如图所示的网格中,用无刻度的直尺,画一条直线把这个六边形分成面积相等的两部分,并简要说明画法(不要求证明)_3、如图,ABBC,CDBC,垂足分别为B,C,P为线段BC上一点,连结PA,PD已知AB5,DC4,BC12,则AP+DP的最小值为_4、如图,ABC中,CACB,ACB90,E为BC边上一动点(不与点B、点C重合),连接AE并延长,在AE延长线上取点D,使CDCA,连
5、接CD,过点C作CFAD交AD于点F,交DB的延长线于点G,若CD3,BG1,则DB_5、填空:(1)如图,圆柱的侧面展开图是_,点B的位置应在长方形的边CD的_,点A到点B的最短距离为线段_的长度(2)AB_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,AB7cm,AC25cm,BC24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发(1)求B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离2、已知a,b,c满足|a(c)20(1)求a,b,c的值;并求出以a,b,c为三
6、边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由3、(1)如图1,四边形ABCD的对角线ACBD于点O判断AB2+CD2与AD2+BC2的数量关系,并说明理由(2)如图2,分别以RtABC的直角边AB和斜边AC为边向外作正方形ABDM和正方形ACEN,连接BN,CM,交点为O判断CM,BN的关系,并说明理由连接MN若AB2,BC3,请直接写出MN的长4、如图,在44的正方形网格中,每个小正方形的边长均为1(1)请在所给网格中画一个边长分别为,的三角形;(2)此三角形的面积是 5、如图,ABC中,C90,BC6,ABC的平分线与线段AC交于点D,且有ADBD,点E是线段A
7、B上的动点(与A、B不重合),联结DE,设AEx,DEy(1)求A的度数;(2)求y关于x的函数解析式(无需写出定义域);(3)当BDE是等腰三角形时,求AE的长-参考答案-一、单选题1、D【分析】根据题意画出点的位置,然后根据勾股定理计算即可【详解】解:的位置如图所示:过点作轴的平行线,过点作轴的平行线,和交于点,故选:D【点睛】本题考查了平面直角坐标系中两点的距离,勾股定理,根据题意构建直角三角形,运用勾股定理解题是关键2、B【分析】根据勾股定理的逆定理逐一判断即可【详解】解:A、32+4262,故此选项不符合题意;B、32+4252,故此选项符合题意;C、62+8292,故此选项不符合题
8、意;D、52+122142,故此选项不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,解题的关键是理解如果三角形的三边长为a、b、c满足a2+b2c2,那么这个三角形就是直角三角形3、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断【详解】解:A、3232()2,能构成直角三角形,故此选项不合题意;B、42()282,能构成直角三角形,故此选项不符合题意;C、6282102,能构成直角三角形,故此选项不合题意;D、5252()2,不能构成直角三角形,故此选项符合题意故选:D【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认
9、真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断4、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解【详解】解:A、A:B:C5:12:13,C18093.6,不是直角三角形,故此选项正确;B、32+4252,是直角三角形,故此选项不合题意;C、ABC,AB+C,A+B+C180,A90,是直角三角形,故此选项不合题意;D、b2a2c2,a2b2+c2,是直角三角形,故此选项不合题意;故选:A【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理5、D【分析】利用勾股定理求出CD的长,进
10、而求出BC的长, 即可求解【详解】解:, , , , , , , ,故选:D【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理6、B【分析】根据题意过D作DNBF于N,连接DI,进而结合全等三角形的判定与性质得出S1+S2+S3+S4+S5RtABC的面积4进行分析计算即可.【详解】解:在RtABC中,CBA60,斜边AB10,BCAB5,AC5,过D作DNBF于N,连接DI,在ACB和BND中,ACBBND(AAS),同理,RtMNDRtOCB,MDOB,DMNBOC,EMDO,DNBCCI,DNCI,四边形DNCI是平行四边形,NCI90,四边形DNCI是矩形,DIC90,D、I、H三
11、点共线,FDIO90,EMFDMNBOCDOI,FMEDOI(AAS),图中S2SRtDOI,SBOCSMND,S2+S4SRtABCS3SABC,在RtAGE和RtABC中,RtAGERtACB(HL),同理,RtDNBRtBHD,S1+S2+S3+S4+S5S1+S3+(S2+S4)+S5RtABC的面积+RtABC的面积+RtABC的面积+RtABC的面积RtABC的面积4552450故选:B【点睛】本题考查勾股定理的应用和全等三角形的判定,解题的关键是将勾股定理和正方形的面积公式进行灵活的结合和应用7、D【分析】根据勾股定理的逆定理可判定A、C,由三角形内角和可判定B、D,可得出答案【
12、详解】A、当BC1,AC2,AB时,满足BC2+AB2=1+3=4=AC2,所以ABC为直角三角形;B、当A:B:C=1:2:3时,可设A=x,B=2x,C=3x,由三角形内角和定理可得x+2x+3x=180,解得x=30,所以A=30,B=60,C=90,所以ABC为直角三角形,C、当BC:AC:AB=3:4:5时,设BC=3x,AC=4x,AB=5x,满足BC2+AC2=AB2,所以ABC为直角三角形;D、当A:B:C=3:4:5时,可设A=3x,B=4x,C=5x,由三角形内角和定理可得3x+4x+5x=180,解得x=15,所以A=45,B=60,C=75,所以ABC为锐角三角形,故选
13、:D【点睛】本题主要考查直角三角形的判定方法,掌握直角三角形的判定方法是解题的关键,主要有勾股定理的逆定理,有一个角为直角的三角形8、B【分析】如图,由线段垂直平分线的性质可知PB=PC,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长【详解】解:如图,连接PC,EF是BC的垂直平分线,PB=PC,PA+PB=PA+PC,PAPB的最小值即为PAPC的最小值,当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长,在RtABC中,A90,AB6,BC10,由勾股定理可得:,PAPB的最小值为8;故选B【点睛】本题主要考查垂直平分线的性质及勾
14、股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键9、A【分析】过点A作AFBC于点F,由题意易得,再根据点,是边的两个黄金分割点,可得,根据勾股定理可得,进而可得,然后根据三角形的面积计算公式进行求解【详解】解:过点A作AFBC于点F,如图所示:,在RtAFB中,点,是边的两个黄金分割点,DF=EF,;故选:A【点睛】本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键10、B【分析】根据勾股定理的逆定理:若三角形三边分别为a,b,c,满足,则该三角形是以c为斜边的直角三角形,由此依次计算验证即可【详解】解:A
15、、,则长为4,5,6的线段不能组成直角三角形,不合题意;B、,则长为8,15,17的线段能组成直角三角形,符合题意;C、,则长为2,3,4的线段不能组成直角三角形,不合题意;D、,则长为1,3的线段不能组成直角三角形,不合题意;故选:B【点睛】本题考查勾股定理的逆定理,掌握并熟练运用勾股定理的逆定理是解题关键二、填空题1、10【分析】将圆柱展开,然后利用两点之间线段最短解答【详解】解:一圆柱高8cm,底面半径为cm,底面周长为:212cm,则半圆弧长为6cm,展开得:BC8cm,AC6cm,由勾股定理得:(cm)故答案为:10cm【点睛】本题考查了勾股定理的实际运用求最短距离,解题的关键是根据
16、题意画出展开图,表示出各线段的长度2、90 连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l 【分析】(1)运用勾股定理求出AF,AB,BF的长,再运用勾股定理逆定理判断出是直角三角形即可得出结论;(2)连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l,则可得结论【详解】解:(1)连接BF,如图,由勾股得, 是直角三角形 故答案为:90;(2)连接AE与BF交于点O,连接BD,CE交于点P,过点O,P作直线l,如图,则直线l即为所求【点睛】本题主要考查了应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图3、
17、15【分析】延长AB至点E,使BE=AB,过点D作DFAB于F,得到DF及EF的长,当点E、P、D共线时,AP+DP=DE有最小值,利用勾股定理求出DE即可【详解】解:延长AB至点E,使BE=AB,过点D作DFAB于F,则BF=CD=4,DF=BC=12,AP+DP=EP+DP,当点E、P、D共线时,AP+DP=DE有最小值,在直角三角形DEF中,EF=BE+BF=5+4=9,AP+DP的最小值为15,故答案为:15【点睛】此题考查最短路径问题,勾股定理,熟记最短路径问题构造直角三角形解决是解题的关键4、【分析】连接AG,设DCBx,根据等腰三角形的性质和三角形内角和定理求出ADB45,然后根
18、据等腰三角形三线合一性质得出DFAF,然后根据垂直平分线的性质得出GADG,进一步得到是等腰直角三角形,在中,根据勾股定理求出AB的长度,设BDm,然后在中,利用勾股定理即可求出DB的长度【详解】解:如图,连接AG设DCBxCACBCD,CADCDA(18090x)45x,CDBCBD(180x)90x,ADBCDBCDA90x(45x)45,CGAD,CACD,DFAF,GADG,GADGDA45,AGB90,设BDm,则AGDGm+1,在中,AB3,在中,即(3)212+(m+1)2,解得m1故答案为:1【点睛】此题考查了等腰三角形的性质,勾股定理,垂直平分线的性质以及三角形内角和定理等知
19、识,解题的关键是根据题意连接AG,得出是等腰直角三角形5、长方形【分析】(1)根据圆柱的展开图特点和两点之间,线段最短求解即可;(2)根据勾股定理求解即可【详解】解:(1)如图,圆柱的侧面展开图是长方形,点B的位置应在长方形的边CD的中点处,点A到点B的最短距离为线段AB的长度故答案为:长方形;中点处;AB;(2)由勾股定理得: 故答案为:【点睛】本题主要考查了圆柱的侧面展开图,两点之间线段最短,勾股定理,熟知相关知识是解题的关键三、解答题1、(1)B90;(2)P、Q两点之间的距离为【分析】(1)如果三角形的三边长a,b,c满足a2+b2c2,那么这个三角形就是直角三角形依据勾股定理的逆定理
20、进行判断即可;(2)依据运动时间和运动速度,即可得到BP和BQ的长,再根据勾股定理进行计算,即可得到PQ的长【详解】解:(1)AB7cm,AC25cm,BC24cm,AB2+BC2625AC2,ABC是直角三角形且B90;(2)运动2s时,AP122(cm),BQ2612(cm),BPABAP725(cm),RtBPQ中,P、Q两点之间的距离为13cm【点睛】本题主要考查了勾股定理的逆定理和勾股定理,解题的关键在于能够根据题意求出B902、(1)a=,b=5,c=,周长=;(2)不能构成直角三角形,理由见解答【分析】(1)由非数的性质可分别求得a、b、c的值,进而解答即可;(2)利用勾股定理的
21、逆定理可进行判断即可【详解】解:(1)|a(c)20a-=0,b-5=0,c-=0,a=2,b=5,c=3,以a,b,c为三边的三角形周长=2+3+5=5+5;(2)不能构成直角三角形,a2+c2=8+18=26,b2=25,a2+c2b2,不能构成直角三角形【点睛】本题主要考查非负数的性质及勾股定理的逆定理,利用非负数的性质求得a、b、c的值是解题的关键3、(1);(2) ,CMBN;【分析】(1)根据勾股定理得到 ,同理求出即可求解;(2)证明即可得到;进而得到CMBN,在四边形CMBN中,根据(1)求得的结论即可求出MN的长【详解】解:(1)ACBD, ,在中, ,在中, ,在中, ,在
22、中, , ,即 ;(2)四边形MDBA和四边形ACEN为正方形, , ,即 , , , , , , , ,CMBN,综上,CMBN;在四边形MBCN中,MCBN,由(1)知 , , , , , 【点睛】本题考查勾股定理,三角形全等的判定与性质,熟练掌握勾股定理,三角形全等的判定与性质是解题关键4、(1)画图见解析;(2)【分析】(1)利用勾股定理在网格中确定再顺次连接即可;(2)利用长方形的面积减去周围三个三角形的面积即可.【详解】解:(1)如图,即为所求作的三角形,其中: (2) 故答案为:【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格
23、三角形的边长”是解本题的关键.5、(1)30;(2)y;(3)124或8【分析】(1)根据等腰三角形的性质、角平分线的定义得到ADBACBD,根据直角三角形的性质求出A;(2)作DFAB于F,根据勾股定理求出DF,再根据勾股定理列式计算求出y关于x的函数解析式;(3)分BEBD、BEDE两种情况,根据等腰三角形的性质、勾股定理计算即可【详解】解:(1)ADBD,ADBA,BD是ABC的平分线,CBDDBA,ADBACBD,C90,A30;(2)如图,作DFAB于F,在RtABC中,C90,BC6,A30,AB2BC12,DADB,DFAB,AFAB6,EF|6x|,在RtAFD中,A30,DFAF2,在RtDEF中,即,解得:y;(3)在RtAFD中,A30,DF2,ADBD4,当BEBD4时,AE124;当BEDE时,12x,解得:x8,即AE8,点E与A、B不重合,DBDE,综上所述:当BDE是等腰三角形时,AE的长为124或8【点睛】本题考查了角的平分线,等腰三角形的性质,勾股定理,熟练掌握勾股定理,灵活运用分类思想是解题的关键