2021-2022学年京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案详解).docx

上传人:可**** 文档编号:57399173 上传时间:2022-11-04 格式:DOCX 页数:19 大小:208.53KB
返回 下载 相关 举报
2021-2022学年京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案详解).docx_第1页
第1页 / 共19页
2021-2022学年京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案详解).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2021-2022学年京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十七章方差与频数分布章节训练试卷(含答案详解).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十七章方差与频数分布章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2021年3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90

2、,则下列关于这组数据表述正确的是( )A平均数是80B众数是60C中位数是100D方差是202、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是()A平均数、中位数和众数都是3B极差为4C方差是D标准差是3、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是()A0.6B6C0.4D44、一组数据1,1,1,3,4,7,12,若加入一个整数,一定不会发生变化的统计量是( )A众数B平均数C中位数D方差5、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2甲乙丙丁平均数(单位:秒)52m5250方差s2(单位:秒2)4

3、.5n12.517.5根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()Am50,n4Bm50,n18Cm54,n4Dm54,n186、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲26,S乙224,S丙225.5,S丁236,则这四名学生的数学成绩最稳定的是()A甲B乙C丙D丁7、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )A频率是0.5B频率是0.6C频率是0.3D频率是0.48、已知样本容量为30,样本频数直方图中各个小长方形的高的比依次是2:4 :3 :1,则第二组的频数是()A

4、14B12C9D89、在某次读书知识比赛中育才中学参赛选手比赛成绩的方差计算公式为: S2 (x188)2+(x288)2+(x888)2,以下说法不一定正确的是()A育才中学参赛选手的平均成绩为88分B育才中学一共派出了八名选手参加C育才中学参赛选手的中位数为88分D育才中学参赛选手比赛成绩团体总分为704分10、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是( )A14,0.7B14,0.4C8,0.7D8,0.4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲

5、、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲21.4,S乙20.6,则两人射击成绩比较稳定的是 _(填“甲”或“乙”)2、下表中记录了甲、乙两名运动员跳远选拔赛成绩(单位:cm)的平均数和方差要从中选择一名运动员参加决赛,最合适的运动员是_甲乙平均数368320方差2.55.63、从全市份数学试卷中随机抽取份试卷,其中有份成绩合格,估计全市成绩合格的人数约为_人4、对于两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的_,方差则反映一组数据在平均数左右的_,因此从平均数看或从方差看,各有长处5、某地区为估计该地区黄羊的只数,先捕捉20只

6、黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志从而估计该地区有黄羊_只三、解答题(5小题,每小题10分,共计50分)1、甲、乙两支篮球队进行了5场比赛,比赛成绩(整数)绘制成了折线统计图(如图,实、虚线未标明球队):(1)填写下表:平均数中位数方差甲 91 乙90 70.8(2)如果从两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、方差以及获胜场数这三个方面分别进行简要分析,你认为选派哪支球队参赛更有可能取得好成绩?2、近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间

7、不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计以下是本次调查结果的统计表和统计图:组别ABCD时间t(分钟)t4040t6060t8080t100人数1230a24(1)求出本次被调查的学生数;(2)请求出统计表中a的值;(3)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数3、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表:成绩78910人数1955乙组成绩统计图根据上面的信息,解答下列问题:(1)甲组的平均成绩为_

8、分,_,甲组成绩的中位数是_,乙组成绩的众数是_;(2)若已经计算出甲组成绩方差为0.81,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?4、甲、乙两名队员参加射击训练,将10次成绩分别制成如图所示的两个统计图:(1)根据以上信息,整理分析数据如表:平均成绩(环)众数(环)中位数方差甲7a7c乙78b4.2填空:a ,b ,c ;(2)根据以上数据分析,请你运用所学统计知识,任选两个角度评价甲、乙两名队员哪位队员的射击成绩更好5、为了让青少年学生走向操场,走进自然,走到阳光下,积极参加体育锻炼我校启动了“学生阳光体育短跑运动”,可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中

9、,报名参加了短跑训练小组在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题(1)请根据图中信息,补齐下面的表格:次数12345小明的成绩(秒)13.313.413.3_13.3小亮的成绩(秒)13.2_13.113.513.3(2)请写出小明的成绩的中位数和众数,小亮成绩的中位数;(3)分别计算他们成绩的平均数和方差,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?-参考答案-一、单选题1、A【分析】根据众数、平均数、中位数、方差的概念以及相应的计算公式进行求解即可【详解】将这组数据从小到大重新排列为:60、60、70、90、90、90、100,所以这组数据的众数是90、中

10、位数是90、平均数为、方差为观察只有选项A正确,故选:A【点睛】本题考查了众数、平均数、中位数、方差的概念,正确掌握各知识点的概念是解答本题的关键2、D【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断【详解】解:这组数据的平均数为:(1+2+3+3+4+5)63,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为514,B选项不符合题意;S2(13)2+(23)2+(33)2+(33)2+(43)2+(53)2,C选项不符合题意;S,因此D选项符合题意,故选:D【点睛】考查平均数、中位数、众数、方差、标准差的计

11、算方法,正确的计算是解答的前提3、C【分析】先求出反面朝上的频数,然后根据频率=频数总数求解即可【详解】解:小明抛一枚硬币100次,其中有60次正面朝上,小明抛一枚硬币100次,其中有40次反面朝上,反面朝上的频率=40100=0.4,故选C【点睛】本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数总数4、A【分析】依据平均数、中位数、众数、方差的定义即可得到结论【详解】解:A、原来数据的众数是1,加入一个整数a后众数仍为1,符合题意;B、原来数据的平均数是,加入一个整数a,平均数一定变化,不符合题意;C、原来数据的中位数是3,加入一个整数a后,如果a3中位数一定变化,不符合题

12、意;D、原来数据的方差加入一个整数a后的方差一定发生了变化,不符合题意;故选:A【点睛】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念是解题的关键5、A【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小故选:A【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好6、A【分

13、析】根据方差的意义求解即可【详解】解:S甲26,S乙224,S丙225.5,S丁236,S甲2S乙2S丙2S丁2,这四名学生的数学成绩最稳定的是甲,故选:A【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好掌握方差的意义是解题的关键7、B【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比)即频率=频数总数可得答案【详解】解:小明进球的频率是3050=0.6,故选:B【点睛】此题主要考查了频率,关键是掌握计算方法8、B【分析】根据样本频数直方图、样本容量的性质计算,即可得到答案

14、【详解】根据题意,第二组的频数是: 故选:B【点睛】本题考查了统计调查的知识;解题的关键是熟练掌握样本容量、频数、频数直方图的性质,从而完成求解9、C【分析】根据方差的计算公式中各数据的具体意义逐一分析求解即可【详解】解:参赛选手比赛成绩的方差计算公式为:S2 (x188)2(x288)2(x888)2,育才中学参赛选手的平均成绩为88分,一共派出了八名选手参加,育才中学参赛选手比赛成绩团体总分为888704(分),由于不能知道具体的数据,所以参赛选手的中位数不能确定,故选:C【点睛】本题主要考查方差,解题的关键是掌握方差的定义和计算公式10、D【分析】根据题意,成绩分式为整数,则大于80.5

15、的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为则频率为故选D【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键二、填空题1、乙【分析】根据方差的意义求解即可【详解】解:S甲21.4,S乙20.2,S乙2S甲2,两人成绩比较稳定的是乙,故答案为:乙【点睛】本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好2、甲【分析】首先比较平均数,平均数相同时选择方差较小的运动员参

16、加【详解】解:甲的平均数比乙的平均数大,甲的方差小于乙的方差,最合适的运动员是甲故答案为:甲【点睛】此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定3、8400【分析】由题意可知:抽取500份试卷中合格率为,则估计全市10000份试卷成绩合格的人数约为份【详解】解:(人故答案为:8400【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是明白利用样本中的数据对整体进行估算是统计学中最常用的估算方法4、一般水平 波动大小

17、 【分析】根据平均数和方差的意义进行回答即可【详解】解:平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,故答案为:一般水平;波动大小【点睛】本题考查了平均数和方差的区别,熟练掌握平均数和方差的意义是解答本题的关键5、400【分析】设这个地区有黄羊x只,根据第二次捕捉40只绵羊,其中有2只有记号,即可列方程求解.【详解】设这个地区有黄羊x只,由题意得解得则估计这个地区有黄羊400只故答案为:400【点睛】本题考查的是用样本估计总体,解答本题的关键是读懂题意,得到第二次捕捉的绵羊中有记号的占全部有记号的比例.三、解答题1、(1)90,28.4,87;(2)选派甲球队参赛更能

18、取得好成绩【分析】(1)根据统计图可得甲队5场比赛的成绩,然后把5场比赛的成绩求和,再除以5即可得到平均数;根据中位数定义:把所用数据从小到大排列,取位置处于中间的数可得中位数;根据方差公式S2(x1)2+(x2)2+(xn)2,进行计算即可;(2)利用表格中的平均数和方差进行比较,然后根据条形图可得甲乙两队各胜多少场,再进行比较即可【详解】解:(1)甲的平均数是:(82+86+95+91+96)90;甲队的方差是:(8290)2+(8690)2+(9590)2+(9190)2+(9690)228.4;把乙队的数从小到大排列,中位数是87;平均数中位数方差甲909128.4乙908770.8故

19、答案为:90,28.4,87;(2)从平均分来看,甲乙两队平均数相同;从方差来看甲队方差小,乙队方差大,说明甲队成绩比较稳定;从获胜场数来看,甲队胜3场,乙队胜2场,说明甲队成绩较好,因此选派甲球队参赛更能取得好成绩【点睛】本题考查统计图、平均数、中位数,以及方差,关键是掌握方差公式S2(x1)2+(x2)2+(xn)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立2、(1)120人;(2)54;(3)1560人【分析】(1)用A组的频数除以它上的百分比得到调查的总人数;(2)用调查的总人数分别减去A组、B组、D组的频数得到a的值;(3)用2400乘以样本中C、D两组的频率之和

20、可估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数【详解】解:(1)由统计表可知,A级学生数是12人,由扇形图可知,A级学生所占的百分比是10%,则本次被调查的学生数为:1210%120人;(2)a12012302454;(3)24001(10%+25%)1560,所以估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数为1560人【点睛】本题考查了用样本估计总体:用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差)一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确3、(1)8.7,3,8.5,8;(2)乙

21、组成绩的方差为0.75,乙组的成绩更加稳定【分析】(1)根据数据平均数的计算方法可得平均数;用总人数减去其他成绩的人数即为m的值;根据中位数(一组数据从小到大排序后最中间的数)和众数(一组数据中出现次数最多的)的定义即可确定甲组成绩的中位数,乙组成绩的众数;(2)先求出乙组数据的平均数,再根据方差公式求出乙组方差,然后进行比较,即可得出答案【详解】解:(1)平均成绩为:,甲组成绩一共有20人,从小到大最中间为8和9,则中位数为,乙组成绩中出现次数最多的为8,则众数为8,故答案为:8.7,3,8.5,8;(2),乙组的成绩更加稳定【点睛】题目主要考查平均数、中位数、众数的定义、方差的算法及数据的

22、稳定性判断,理解定义及方差的算法是解题关键4、(1),;(2)答案见解析.【分析】(1)分别根据平均数,方差,中位数的定义求解即可;(2)从众数与中位数的角度分析,乙的射击成绩都比甲要高,从而可得结论.【详解】解:(1)由频数直方图可得:甲的成绩如下: 其中环出现了4次,所以众数是环,环 由折线统计图可得:按从小到大排序为: 所以中位数为:.故答案为:,;(2)从众数与中位数来看,乙的众数与中位数都比甲高,所以乙的射击成绩比甲的射击成绩要好一些.【点睛】本题考查的是平均数,众数,中位数,方差的含义,根据平均数,众数,中位数,方差下结论,掌握以上基础概念是解本题的关键.5、(1)13.2,13.

23、4;(2)小明:中位数13.3,众数13.3,小亮:中位数13.3;(3)小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩【分析】(1)从统计图中可得到每次百米训练的成绩,从而填入表格即可;(2)根据中位数、众数的意义求出结果即可;(3)计算两人的平均数、方差,再比较得出结论【详解】解:(1)从统计图可知,小明第次的成绩为,小亮第次的成绩为,故答案为:,;补全的表格如下:次数12345小明13.313.413.313.213. 3小亮13.213.413.113.513.3(2)小明次成绩的中位数是,众数为;小亮次成绩的中位数是;(3)小明小亮小明小亮小明小亮小明小亮小明的成绩比较稳定,因此对小亮的建议要加强稳定性训练,而小明应该加强爆发力训练,提高训练成绩【点睛】本题考查折线统计图、加权平均数、中位数、众数以及方差的意义和计算方法,明确各个统计量的意义是正确解答的前提

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁