《2022年最新北师大版八年级数学下册第三章图形的平移与旋转达标测试试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第三章图形的平移与旋转达标测试试卷(无超纲).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB ,OD4,将矩形ABCD绕点O顺时针旋
2、转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )A(,)B(,)C(,)D(,)2、下列图形中,是中心对称图形的是( )ABCD3、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5)已知点A的坐标为(2,0),点Q是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A经n次斜平移后得到,且点C的坐标为(8,6),则ABC的面积是()A12B14C16D184、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD5、如图,三角形中,将绕点B逆时针旋转
3、得到,使点C的对应点恰好落在边上,则的度数是( )ABCD6、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )A( - 1, - 3)B( - 1,3)C(1, - 3)D(3,1)7、下列图形中,既是中心对称图形又是轴对称图形的有几个()A1个B2个C3个D4个8、下列图形既是轴对称图形又是中心对称图形的是()ABCD9、下列图形中,是中心对称图形的是()ABCD10、下列图形中,既是轴对称图形又是中心对称图形的是()AB C D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45后得到正方形O
4、A1B1C1,依此方式,绕点O连续旋转2022次得到正方形OA2022B2022C2022,如果点A的坐标为(1,0),那么点B2022的坐标为 _2、若点P(m,2)与Q(4,2)关于原点对称,则m_3、如图,ABC的顶点A,B分别在x轴,y轴上,ABC90,OAOB1,BC2,将ABC绕点O顺时针旋转,每次旋转90,则第2021次旋转结束时,点C的坐标为 _4、在平面直角坐标系中,点P(2,5)关于原点对称的点的坐标是 _5、点关于原点对称的点N,则点N的坐标为_三、解答题(5小题,每小题10分,共计50分)1、图1、图2均为76的正方形网格,点A、B、C在格点上(1)在图1中确定格点D,
5、并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(试画出2个符合要求的点,分别记为D1、D2)(2)在图2中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(试画出2个符合要求的点,分别记为E1、E2)2、如图,将两个完全相同的三角形纸片ABC与DEC重合放置,其中C90,BE30,如图,固定ABC,使DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,求证DEAC3、如图,点A、B、C都是格点(格点即每一个小正方形的顶点)(1)在图1中确定点D,并画出以A、B、C、D为顶点的四边形,使这个四边形为轴对称图形(画一个即可);(2)在图2中确定点E,并画出以A
6、、B、C、E为顶点的四边形,使这个四边形为中心对称图形(画一个即可)4、如图,在平面直角坐标系中,P(a,b)是三角形ABC的边AB上一点,三角形ABC经平移后点P的对应点为(1)请画出经过上述平移后得到的三角形,并写出点,的坐标;(2)求点到的距离5、如图,正方形网格中,每一个小正方形的边长都是1个单位长度,在平面直角坐标系内,ABC的三个顶点坐标分别为A(1,1),B(3,2),C(2,4)(1)画出ABC关于原点O对称的,直接写出点的坐标;(2)画出ABC绕点O逆时针旋转90后的,并写出点的坐标-参考答案-一、单选题1、B【分析】由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐
7、标为(2,0),D点坐标为(2,),旋转后D点坐标为(4,0),则C点坐标为(1,)【详解】四边形ABCD为矩形AB=CD=,DOC=60在中有则C点坐标为(2,0),D点坐标为(2,)又旋转后D点落在x轴的正半轴上可看作矩形ABCD中绕点O顺时针旋转了60得到如图所示,过C作y轴平行线交x轴于点M其中DOC=DOC=60,OMC=90,OC=OC=2OM=1,MC=C坐标为(1,)故选:B【点睛】本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60是解题的关键2、D【详解】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故
8、本选项不符合题意;D、是中心对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了中心对称图形的定义,熟练掌握在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键3、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到ACB90,延长BC交x轴于点E,过C点作CFAE于点F,根据待定系数法得出直线的解析式进而解答即可【详解】解:连接CQ,如图:由中心对称可知,AQBQ,由轴对称可知:BQCQ,AQCQBQ,QACACQ,QBCQCB,QAC+ACQ+QBC+QCB180,ACQ+QCB90,ACB90,ABC是直
9、角三角形,延长BC交x轴于点E,过C点作CFAE于点F,如图,A(2,0),C(8,6),AFCF6,ACF是等腰直角三角形,AEC45,E点坐标为(14,0),设直线BE的解析式为ykx+b,C,E点在直线上,可得:,解得:,yx+14,点B由点A经n次斜平移得到,点B(n+2,2n),由2nn2+14,解得:n4,B(6,8),ABC的面积SABESACE12812612,故选:A【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到的坐标是解本题的关键4、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形
10、,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形5、A【分析】根据旋转的性质,可得 ,即可求解【详解】解:根据题意得:ABC=ABC故选:A【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转前后对应角相等
11、,对应边相等是解题的关键6、A【分析】由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可【详解】解:两个点关于原点对称时,它们的坐标符号相反,点关于原点对称的点的坐标是故选:A【点睛】题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律7、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:第一个图形既不是轴对称图形,也不是中心对称图形,不符合题意;第二个图形是轴对称图形,不是中心对称图形,不符合题意;第三个图形是轴对称图形,不是中心对称图形,不符合题意;第四个图形既是轴对称图形,也是中心对称图形,符合题意;既是中心对称图形又是轴对称图形的只有1个,故选:
12、A【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,也不是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同
13、一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形9、A【分析】把一个图形绕某点旋转后能与自身重合,则这个图形是中心对称图形,根据中心对称图形的定义逐一判断即可.【详解】解:选项A中的图形是中心对称图形,故A符合题意;选项B中的图形不是中心对称图形,故B不符合题意;选项C中的图形不是中心对称图形,故C不符合题意;选项D中的图形不是中心对称图形,故D不符合题意;故选A【点睛】本题考查的是中心对称图形的识别,掌握中心对称图形的定义是解本题的关键.10、C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转
14、180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C既是轴对称图形,又是中心对称图形,故本选项符合题意;D既不是轴对称图形,也不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合二、填空题1、(1,1)【分析】先利用勾
15、股定理以及正方形、旋转的性质求出对应边长,再通过边长找出对应的前几个坐标,会发现:关于B的坐标,是每8个一循环,找到第2022个是对应的循环中的第6个,从而确定B2022坐标【详解】点A的坐标为(1,0),OA1,四边形OABC是正方形,OAB90,ABOA1,B(1,1),连接OB,如图:由勾股定理得:OB,由旋转的性质得:OBOB1OB2OB3,将正方形OABC绕点O逆时针旋转45后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45,依次得到AOBBOB1B1OB245,B1(0,),B2(1,1),B3(,0),B4(1,1),B5(0,),B6(1,1),发现是8次一循环,
16、则202282526,点B2022的坐标为(1,1),故答案为:(1,1)【点睛】本题主要是图形旋转类的坐标规律问题,利用图形以及旋转的性质求出对应前几个相应点的坐标,从而发现其中规律,应用规律进行求解是解决此类问题的关键2、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P1(-x,-y)【详解】解:因为点P(m,2)与Q(4,2)关于原点对称,所以m-4=0,即m=4,故答案为:4【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键3、【分析】过点C作 轴于点D,根据 OAOB1,AOB=90,可得ABO=45,从而得到CB
17、D=45,进而得到BD=CD=2,可得到点,再由将ABC绕点O顺时针旋转,第一次旋转90后,点,将ABC绕点O顺时针旋转,第二次旋转90后,点,将ABC绕点O顺时针旋转,第三次旋转90后,点,将ABC绕点O顺时针旋转,第四次旋转90后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环,即可求解【详解】解:如图,过点C作 轴于点D,OAOB1,AOB=90,ABO=45,ABC90,CBD=45,BCD=45,BD=CD,BC2, ,BD=CD=2,OD=OB+BD=3,点,将ABC绕点O顺时针旋转,第一次旋转90后,点,将ABC绕点O顺时针旋转,第二次旋转90后,点,将ABC绕点O顺时针旋转
18、,第三次旋转90后,点,将ABC绕点O顺时针旋转,第四次旋转90后,点, 由此发现,ABC绕点O顺时针旋转四次一个循环, ,第2021次旋转结束时,点C的坐标为故答案为:【点睛】本题主要考查了勾股定理,坐标与图形,图形的旋转,明确题意,准确得到规律是解题的关键4、(2,5)【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数即可求解【详解】解:点P(2,5)关于原点对称的点的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了关于原点对称的两个点的坐标特征,掌握“关于原点对称的点的横坐标、纵坐标分别互为相反数”是解题的关键5、【分析】根据点坐标关于原点对称的变换规律即可得【详解】解
19、:点坐标关于原点对称的变换规律:横坐标,纵坐标都是互为相反数,则点关于原点对称的点N的坐标是故答案为:【点睛】本题考查了点坐标关于原点对称的变换规律,熟练掌握变换规律是解题关键三、解答题1、(1)见解析;(2)见解析【分析】(1)根据轴对称图形的定义进行画图;(2)根据中心对称的图形的定义画图【详解】(1)如图:(2)如图:【点睛】本题主要考查了利用轴对称、中心对称设计图案,解题的关键是掌握寻找中心对称的中心、轴对称的对称轴与画图的综合能力2、见解析【分析】先根据直角三角形两锐角互余求出A=60,再由由旋转的性质可得,CD=CA,EDC=A=60,即可证明ACD=60,推出ACD=EDC=60
20、,则DEAC【详解】解:ACB90,BE30,A=60,由旋转的性质可得,CD=CA,EDC=A=60,ACD是等边三角形,ACD=60,ACD=EDC=60,DEAC【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,直角三角形两锐角互余,平行线的判定,推出ACD是等边三角形是解题的关键3、(1)见解析;(2)见解析【分析】(1)直接利用轴对称图形的性质得出一个符合题意的图形;(2)直接利用中心对称图形的性质得出一个符合题意的图形即可【详解】解:(1)如图1所示: 则四边形ABCD即为所求;(2)如图2所示:则四边形ABCE即为所求【点睛】本题考查了轴对称图形,中心对称图形,熟练掌握轴
21、对称图形,中心对称图形是解题的关键4、(1)图见解析,;(2)【分析】(1)利用平移变换的性质,分别作出A,B,C的对应点A1,B1,C1即可;(2)设点A1到B1C1的距离为h利用面积法构建方程求解即可【详解】(1)P(a,b)平移后的对应点是平移规则是向左移动2个单位长度,再向上移动5个单位长度A(1,-1),B(0,-5),C(4,-1);(2)由图形可知设点A1到B1C1的距离为h即设点A1到B1C1的距离为【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质,学会利用面积法解决求线段问题5、(1)作图见解析,(-1,1);(2)作图见解析,(-1, 1),(-2, 3),(-4, 2);【分析】(1)根据A(1,1),B(3,2),C(2,4)即可画出ABC关于原点O对称的的A1B1C1,进而可以写出点A1的坐标;(2)根据旋转的性质即可画出ABC绕点O逆时针旋转90后的A2B2C2;进而可以写出点的坐标即可【详解】解:(1)如图,A1B1C1即为所求, 所以点A1的坐标为:(-1,1);(2)A2B2C2即为所求;点的坐标分别为:(-1, 1),(-2, 3),(-4, 2);【点睛】本题考查了作图旋转变换和中心对称变换,解决本题的关键是掌握旋转的性质