《2022年最新人教版九年级数学下册第二十六章-反比例函数同步训练练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十六章-反比例函数同步训练练习题(含详解).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十六章-反比例函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A是反比例函数图象上的一点,过点A作ACx轴,垂足为点C,D为AC的中点,若AOD的面积为1,则k
2、的值为()A2B3C4D52、下列函数,其中y是x的反比例函数的是( )ABCD3、若点A(-7,y1),B(-4,y2),C(5,y3),在反比例函数的图象上,则,的大小关系是()ABCD4、已知反比例函数y,下列结论不正确的是()A图象经过点(1,1)B图象在第一、三象限C当x1时,0y1Dy随着x的增大而减小5、如图,和均为等腰直角三角形,且顶点A、C均在函数的图象上,连结交于点E,连结若,则k的值为( )A B C4D6、如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF若点E为AC的中点
3、,AEF的面积为2,则k的值为( )A2B4C6D87、已知点(x1,y1),(x2,y2)均在双曲线y上,下列说法中错误的是()A若x1x2,则y1y2B若x1x2,则y1y2C若0x1x2,则y1y2D若x1x20,则y1y28、如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是_ABCD9、正比例函数y2x和反比例函数y都经过的点是()A(0,0)B(1,2)C(2,1)D(2,4)10、已知反比例函数(a为常数)图象上三个点的坐标分别是,其中,则的大小关系的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4
4、分,共计20分)1、观察反比例函数的图象,当时,x的取值范围是_2、反比例函数的图象经过点,则k的值为_3、如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=(x0)的图象上,则k的值为_4、反比例函数(是常数,)的图象经过点,那么这个函数图象所在的每个象限内的值随值的增大而_(填“增大”或“减小”)5、如图,点P在反比例函数y(x0)的图象上,且横坐标为2若将点P先向右平移2个单位,再向上平移2个单位后所得图象为点P则经过点P的反比例函数图象的关系式是 _三、解答题(5小题,每小题10分,共计50分)1、已知y=y1+y2,并且y1与x成正比例,y2与x-
5、2成反比例当x=3时,y=7;当x=1时,y=1,求:y关于x的函数解析式2、如图,在平面直角坐标系中,反比例函数y(x0)的图象经过点A(2,6),将点A向右平移2个单位,再向下平移a个单位得到点B,点B恰好落在反比例函数y(x0)的图象上,过A,B两点的直线yk2x+b与y轴交于点C(1)求a的值及点C的坐标(2)在y轴上有一点D(0,5),连接AD,BD,求ABD的面积(3)结合图象,直接写出k2x+b的解集3、如图,已知直线与双曲线交于两点,过点A作轴于点C,过点B作轴于点D(1)双曲线解析式为_,A点的坐标为_,B点的坐标为_(2)若点P在直线上,是否存在点使,若存在,请求出此时点P
6、的坐标,若不存在,请说明理由(3)若点M为y轴上的一个动点,N为平面内一个动点,当以A、B、M、N为顶点的四边形是矩形时,直接写出M点坐标4、已知y与2x3成反比例,且当x2时,y4,求y关于x的函数解析式5、如图,在ABCD中,设BC边的长为x(cm),BC边上的高线AE长为y(cm),已知ABCD的面积等于24cm2(1)求y关于x的函数表达式;(2)求当3y6时x的取值范围-参考答案-一、单选题1、C【分析】根据题意可知AOC的面积为2,然后根据反比例函数系数k的几何意义即可求得k的值【详解】解:ACx轴,垂足为点C,D为AC的中点,若AOD的面积为1,AOC的面积为2,SAOC|k|2
7、,且反比例函数图象在第一象限,k4,故选:C【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|2、B【分析】根据反比例函数的定义即可判断【详解】解:A、是一次函数,不是反比例函数,故此选项不合题意;B、是反比例函数,故此选项符合题意;C、不是反比例函数,故此选项不合题意;D、是正比例函数,不是反比例函数,故此选项不合题意;故选B【点睛】此题主要考查反比例函数的识别,解题的关键是熟知反比例函数的定义:一般地,形如的函数叫做反比例函数3、D【分析】由反比例函数解析式可知反比例函数图象在第一、三象限,
8、该函数在每个象限内,随的增大而减小,由此进行求解即可【详解】点,在反比例函数的图象上,函数图象在第一、三象限,该函数在每个象限内,随的增大而减小,即,故选D【点睛】本题主要考查了反比例函数图像的性质,解题的关键在于能够熟练掌握反比例函数图像的性质4、D【分析】根据反比例函数的性质,利用排除法求解【详解】解:A、x=1,y=1,图象经过点(1,1),正确;B、k=10,图象在第一、三象限,正确;C、k=10,图象在第一象限内y随x的增大而减小,当x1时,0y1,正确;D、应为当x0时,y随着x的增大而减小,错误故选:D【点睛】本题考查了反比例函数的性质,当k0时,函数图象在第一、三象限,在每个象
9、限内,y的值随x的值的增大而减小5、C【分析】先证明可得如图,过作轴于 利用等腰直角三角形的性质证明再利用反比例函数值的几何意义可得答案.【详解】解: 和均为等腰直角三角形, 如图,过作轴于 为等腰直角三角形, 反比例函数的图象在第一象限,则 故选C【点睛】本题考查的是等腰直角三角形的性质,反比例函数值的几何意义,掌握“反比例函数k值的几何意义”是解本题的关键.6、C【分析】设 ,根据矩形的性质,可得 ,再由点E为AC的中点,可得点E的纵坐标为 ,从而得到 ,进而得到 ,再由AEF的面积为2,可得到ACF的面积为4,即可求解【详解】解:设 ,四边形ABCD为矩形, ,点E为AC的中点,点E为B
10、D的中点,B在x轴的正半轴上,点E的纵坐标为 , ,点E为AC的中点, , ,AEF的面积为2,AE=CE,ACF的面积为4,即 ,解得: 故选:C【点睛】本题主要考查了反比例函数的图象和性质,几何意义,矩形的性质,利用数形结合思想解答是解题的关键7、D【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线y,用y1、y2表示出x1,x2,据此进行判断【详解】解:点(x1,y1),(x2,y2)均在双曲线y上,y1,y2A、当x1x2时,即y1y2,故本选项说法正确;B、当x1x2时,即y1y2,故本选项说法正确;C、因为双曲线y位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当
11、0x1x2时,y1y2,故本选项说法正确;D、因为双曲线y位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当x1x20时,y1y2,故本选项说法错误;故选:D【点睛】本题主要考查了反比例函数的图象性质,熟悉掌握反比例函数的图象变化进行比较是解题的关键8、B【分析】设出点P的坐标,阴影部分面积等于点P的横纵坐标的积,把相关数值代入即可【详解】解:设点P的坐标为(x,y)P(x,y)在反比例函数的图象,kxy,|xy|3,点P在第二象限,k3,y;故选:B【点睛】本题考查反比例函数中k的几何意义,用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数比例系数;若反比例函数的图
12、象在二、四象限,比例系数应小于0,还应注意若反比例函数只有一个图象的分支,自变量的取值也应只表现一个象限的取值9、B【分析】联立正比例函数与反比例函数解析式,求出它们的交点坐标即可得到答案【详解】解:联立得:,解得,解得或正比例函数和反比例函数都经过(1,2)或(-1,-2),故选B【点睛】本题主要考查了正比例函数与反比例函数的交点坐标,解题的关键在于能够熟练掌握求正比例函数与反比例函数交点坐标的方法10、C【分析】分析反比例函数在各个象限内的增减性,然后判断三个点即可【详解】解:,反比例函数(a为常数)图象在二、四象限,且在每个象限内随增大而增大,故选:C【点睛】本题考查了根据反比例函数判断
13、反比例函数的增减性,根据增减性判断函数值大小,熟练掌握反比例函数的性质是解本题的关键二、填空题1、x1或x0#x0或x-1【解析】【分析】利用函数值找到分界点(-1,-2),根据反比例函数的图象和性质与直线y=-2的位置关系解答即可【详解】解:k20,反比例函数图像位于一三象限,在每个象限内y随x的增大而减小,y=-2时,解得x=-1,当y-2时x1或x0,故答案为x1或x0【点睛】本题重点考察学生对反比例函数图像和性质的理解,掌握反比例函数的图象和性质,以及利用反比例函数与直线y=-2的交点求不等式解集是解题的关键2、-5【解析】【分析】把(,)代入函数解析式即可求的值【详解】解:由题意知,
14、解得:故答案是:【点睛】本题考查的是用待定系数法求反比例函数的比例系数,解题关键是将点的坐标代入函数的解析式中3、【解析】【分析】连接,交轴于点,设点的坐标为,从而可得,先根据菱形的面积公式和性质可得,从而可得,再将点的坐标代入反比例函数的解析式即可得【详解】解:如图,连接,交轴于点,设点的坐标为,则,菱形的面积为12,即,解得,将点代入反比例函数得:,故答案为:【点睛】本题考查了反比例函数与几何综合、菱形的性质,熟练掌握菱形的性质是解题关键4、减小【解析】【分析】利用待定系数法求出,再根据值的正负确定函数值的增减性【详解】解:反比例函数(是常数,)的图象经过点,所以,所以这个函数图象在一三象
15、限,在每个象限内的值随值的增大而减小故答案为:减小【点睛】本题考查了运用待定系数法求反比例函数的表达式和反比例函数的性质,熟练掌握反比例函数的性质是解题的关键5、y【解析】【分析】先将点横坐标代入解析式求出点纵坐标,再根据平移规律求出的坐标,利用待定系数法即可求出经过点的反比例函数图象的解析式【详解】解:点在反比例函数的图象上,且横坐标为2,点的纵坐标为,点坐标为;将点先向右平移2个单位,再向上平移2个单位后所得图象为点设经过点的反比例函数图象的解析式是,把点代入得:,反比例函数图象的解析式是故答案为:【点睛】本题考查了用待定系数法确定反比例函数的解析式,反比例函数图象上点的坐标特征,解题的关
16、键是熟练掌握待定系数法三、解答题1、函数解析式是y=2x+1x-2【分析】根据正比例与反比例的性质,设y1=k1x,y2=k2x-2则所求的函数解析式为y=k1x+k2x-2k10,k20,再代入x=3,y=7,x=1,y=1,待定系数法求解析式即可【详解】根据题意设y1=k1x,y2=k2x-2,则所求的函数解析式为y=k1x+k2x-2k10,k20把当x=3时,y=7;当x=1时,y=1,代入y=k1x+k2x-2得7=3k1+k21=k1-k2 解得:k1=2k2=1所以,所得函数解析式是y=2x+1x-2【点睛】本题考查了正比例函数与反比例函数的定义,设y1=k1x,y2=k2x进而
17、根据待定系数法求解析式是解题的关键2、(1);C(0,9);(2)SABD;(3)【分析】(1)由点A(2,6)求出反比例函数的解析式为y,进而求得B(4,3),由待定系数法求出直线AB的解析式为yx9,即可求出C点的坐标;(2)由(1)求出CD,根据SABDSBCDSACD可求得结论;(3)直接根据函数图像解答即可【详解】解:(1)把点A(2,6)代入y,2612,反比例函数的解析式为y,将点A向右平移2个单位,x4,当x4时,y3,B(4,3),直线AB的解析式为yk2x+b,由题意可得,解得,yx9,当x0时,y9,C(0,9);(2)由(1)知CD954,SABDSBCDSACDCD|
18、xB|CD|xA|44424;(3)A(2,6),B(4,3),根据图像可知k2x+b的解集为【点睛】本题考查了反比例函数系数k的几何意义,待定系数法求函数的解析式,三角形的面积的计算,求得直线AB的解析式是解题的关键3、(1),;(2)或(3)或或或【分析】(1)将点代入直线解析式即可得出点的坐标,将点的坐标代入双曲线解析式即可得出解析式;(2)分两种情况进行讨论:当点在点下方时;当点在点上方时,分别计算即可;(3)分三种情况进行讨论:当时;当时,当时,分别计算即可【详解】解:(1)直线经过两点,解得,,直线与双曲线交于两点,双曲线解析式为:,故答案为:,;(2)设与轴交于点,当时,解得,点
19、,点,当点在点下方时,与点重合,;当点在点上方时,即,解得,点,综上:点得坐标为或;(3)画出图形可知,四边形为对角线长度为的正方形,当时,设 则 解得: ;当时,同理可得:;当时,设,设得中点,解得:,综上:满足条件的点的坐标为或或或【点睛】本题考查了一次函数与反比例函数综合,矩形的性质,勾股定理等知识点,根据数形结合的思想解题是关键4、y【分析】根据题意可以设出y(k0),把“x2,y4”代入,进行求解即可得出函数解析式【详解】解:依题意可设y(k0),当x2时,y4,4,k4,函数解析式为y答:y关于x的函数解析式是y【点睛】本题考查待定系数法求反比例函数解析式,注意设函数解析式时,系数k不为零5、(1)y(x0);(2)当3y6时x的取值范围为4x8【分析】(1)利用平行四边形的面积公式列出函数关系式即可;(2)根据x的取值范围确定y的取值范围即可【详解】(1)BC边的长为x(cm),BC边上的高线AE长为y(cm),已知ABCD的面积等于24cm2根据平行四边形的面积计算方法得:xy24,y(x0);(2)当y3时x8,当y6时x4,所以当3y6时x的取值范围为4x8【点睛】本题考查了反比例函数的应用及平行四边形的性质的知识,解题的关键是根据题意列出函数关系式