《【高考】高中数学知识点易错点梳理函数部分 .docx》由会员分享,可在线阅读,更多相关《【高考】高中数学知识点易错点梳理函数部分 .docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中数学知识点易错点梳理函数C 3.函数图像的对称性(1)一个函数图像自身的对称性性质1:对于函数,若存在常数使得函数定义域内的任意,都有,则函数的图像关于直线对称. 【特例】,当时,的图像关于直线对称. 性质2:对于函数,若存在常数使得函数定义域内的任意,都有-的图像关于点对称. 【特例】:当时,的图像关于点对称.事实上,上述结论是广义奇(偶)函数的性质.性质3:设函数,如果对于定义域内任意的,都有,则的图像关于直线对称.(这实际上是偶函数的一般情形)广义偶函数.性质4:设函数,如果对于定义域内任意的,都有,则的图像关于点对称.(实际上是奇函数的一般情形)广义奇函数.【小结】函数对称性的充要
2、条件函数关系式()对称性函数图像是奇函数函数图像是偶函数或函数图像关于直线对称或函数图像关于点对称(2)两个函数图像之间的对称性1.函数与的图像关于直线对称.2.函数与的图像关于直线对称.3.函数与的图像关于原点对称.4.函数与的图像关于直线对称.特别地,函数与的图像关于直线对称.(2010江苏卷5)设函数f(x)=x(ex+ae-x)(xR)是偶函数,则实数a=_ a = -1C4.几个函数方程的周期(约定)(1)若,或,则的周期;(2)若,或,或 ,或,或,则的周期;【说明】函数满足对定义域内任一实数(其中为常数),都有等式成立.上述结论可以通过反复运用已知条件来证明.C5.对称性与周期性
3、的关系(可与三角函数类比)定理1:若定义在上的函数的图像关于直线和对称,则是周期函数,且是它的一个周期.推论1:若函数满足及,则是以为周期的周期函数.定理2:若定义在上的函数的图像关于点和直线对称,则是周期函数,且是它的一个周期.推论2:若函数满足及,则是以为周期的周期函数.定理3:若定义在上的函数的图像关于点和对称,则是周期函数,且是它的一个周期.推论3:若函数满足及,则是以为周期的周期函数.C6. 1、若函数为偶函数,则函数的图像关于直线对称.2、若函数为奇函数,则函数的图像关于点对称.3、定义在上的函数满足,且方程恰有个实根,则这个实根的和为.C7.关于奇偶性与单调性的关系. 如果奇函数
4、在区间上是递增的,那么函数在区间上也是递增的; 如果偶函数在区间上是递增的,那么函数在区间上是递减的;C11.函数图像变换(主要有平移变换、翻折变换、对称变换和伸缩变换等).1.平移变换(1)函数的图象是把的图象沿轴向左或向右平移个单位得到的(2)函数+的图象是把助图象沿轴向上或向下平移个单位得到的2.翻折变换(1)由得到,就是把的图像在轴下方的部分作关于轴对称的图像,即把轴下方的部分翻到轴上方,而原来轴上方的部分不变.(2)由得到,就是把的图像在轴右边的部分作关于轴对称的图像,即把轴右边的部分翻到轴的左边,而原来轴左边的部分去掉,右边的部分不变.3.伸缩变换:将的横坐标变为原来的倍,纵坐标变
5、为原来的倍,得到4.对称变换(1)函数的图像可以将函数的图像关于轴对称即可得到;(2)函数的图像可以将函数的图像关于轴对称即可得到;(3)函数的图像可以将函数的图像关于原点对称即可得到;(4)函数的图像可以将函数的图像关于直线对称得到.(5)函数的图像可以将函数的图像关于直线对称即可得到; .【注意】:函数图像平移和伸缩变换应注意的问题(1) 观察变换前后位置变化:.函数图像的平移、伸缩变换中,图像的特殊点、特殊线也作相应的变换.(2) 观察变换前后量变化:直线、双曲线、抛物线通过伸缩变换后仍分别为直线、双曲线、抛物线,但可以改变直线的倾斜角,双曲线的离心率、抛物线的开口大小及它们的位置; (
6、3)图像变换应重视将所研究函数与常见函数(正比例函数、反比例函数、一次函数、二次函数、对数函数、指数函数、三角函数、“函数”及函数等)相互转化. (4)应特别重视“二次三项式”、“二次方程”、“二次函数”、“二次曲线”之间的特别联系,理解函数、方程、曲线及不等方程的联系.12、求一个函数的解析式时,你标注了该函数的定义域了吗?13、求函数的定义域的常见类型记住了吗?(1)函数y=的定义域是 ;复合函数的定义域弄清了吗?(2)函数的定义域是0,1,求的定义域. 函数的定义域是, 求函数的定义域14、含参的二次函数的值域、最值要记得讨论。(3)若函数y=asin2x+2cosx-a-2(aR)的最
7、小值为m, 求m的表达式17、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;18、 根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法。19、 你知道函数的单调区间吗?(该函数在和上单调递增;在和上单调递减)这可是一个应用广泛的函数!20、 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀.21、 对数的换底公式及它的变形,你
8、掌握了吗?()22、 你还记得对数恒等式吗?()23、 “实系数一元二次方程有实数解”转化为“”,你是否注意到必须;当a=0时,“方程有解”不能转化为若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?例如:A3.幂函数的的性质及图像变化规律:(1) 所有的幂函数在都有定义,并且图像都过点;(2)时,幂函数的图像通过原点,并且在区间上是增函数特别地,当时,幂函数的图像下凸;当时,幂函数的图像上凸;(3)时,幂函数的图像在区间上是减函数在第一象限内,当从右边趋向原点时,图像在轴右方无限地逼近轴正半轴,当趋于时,图像在轴上方无限地逼近轴正半轴【说明】:对于幂函数我们只要求掌握的这5类,它们的图像都经过一个定点(0,0)和(0,1),并且时图像都经过(1,1),把握好幂函数在第一象限内的图像就可以了.