《浙江大学计算机学院研究生人工智能引论课件优秀PPT.ppt》由会员分享,可在线阅读,更多相关《浙江大学计算机学院研究生人工智能引论课件优秀PPT.ppt(89页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、浙江高校计算机学院探讨生人工智能引论课件浙江高校计算机学院探讨生人工智能引论课件第第13讲讲 智能智能Agent及多及多Agent系统系统Chapter 13 Intelligent Agent&Multi-Agent Systems徐从富徐从富浙江高校人工智能探讨所浙江高校人工智能探讨所2003年第一稿年第一稿2005年年10月修改补充月修改补充2007年年10月其次次修改月其次次修改1内容1.概述概述2.2.分布式问题求解分布式问题求解3.3.Agent4.4.Agent理论理论5.5.Agent结构结构6.6.Agent通信通信7.7.Agent的协调与协作的协调与协作8.8.多多Age
2、nt环境环境MAGE9.9.面对面对Agent的软件技术的软件技术10.Mobile Agent11.若干前沿问题探讨若干前沿问题探讨213.1 概述概述分布式人工智能(DAI)主要探讨在逻辑上或物理上分散的智能系统如何并行的、相互协作地实现问题求解。两种解决问题的方法:自顶向下:分布式问题求解自底向上:基于Agent的方法3DAI系统的特色系统的特色1)系统中的数据、学问,以及限制不但在逻辑上,而且在物理上是分布的,既没有全局限制,也没有全局的数据存储。2)各个求解机构由计算机网络互连,在问题求解过程中,通信代价要比求解问题的代价低得多。3)系统中诸机构能够相互协作,来求解单个机构难以解决,
3、甚至不能解决的任务。4DAI系统的主要优点系统的主要优点1)提高问题求解实力提高问题求解实力2)提高问题求解效率提高问题求解效率3)扩大应用范围扩大应用范围4)降低软件的困难性降低软件的困难性513.2分布式问题求解特点:特点:数据、学问、限制均分布在系统的各节数据、学问、限制均分布在系统的各节点上,既无全局限制,也无全局数据和点上,既无全局限制,也无全局数据和学问存储。学问存储。两种协作方式:两种协作方式:任务分担任务分担 结果共享结果共享613.2.1分布式问题求解系统分类依据组织结构,分布式问题求解系统可以分为三类:层次结构类平行结构类混合结构类713.2.2分布式问题求解过程分布式问题
4、求解过程可以分为四步:任务分解任务安排子问题求解结果综合8分布式问题求解系统中协作的分类按节点间协作量的多少,协作分为三类:全协作系统无协作系统半协作系统常用的通信方式有:共享全局存储器信息传递黑板模型913.3 智能智能Agent及多及多Agent系统系统多Agent系统主要探讨在逻辑上或物理上分别的多个Agent协调其智能行为,即学问、目标、意图及规划等,实现问题求解。可以看作是一种由底向上设计的系统。10Agent的思想的思想智能Agent的几个典型的实例:Microsoft的Office助手计算机病毒(破坏Agent)计算机游戏或模拟中的智能角色贸易和谈判Agent(如Ebay的拍卖A
5、gent)网络蜘蛛WebSpider(搜寻引擎中的数据搜集和索引Agent,如Google)11Agent概念的出现概念的出现面对过程的方法面对过程的方法面对实体的方法面对实体的方法面对对象的方法面对对象的方法面对面对Agent的方法的方法软件开发方法的进化软件开发方法的进化12Agent的定义的定义在计算机和人工智能领域中,Agent可以看作是一个实体实体,它通过传传感器感器感知环境,通过效应器效应器作用于环境。13Agent的强定义的强定义 基于某种场景,并具有敏捷、自主的行为实力,以满足设计目标的计算机系统。14Agent的弱定义的弱定义 满满足足如如下下特特征征的的基基于于硬硬件件或或
6、(更更常常常是)软件的计算机系统:常是)软件的计算机系统:自主性自主性(Autonomy)(Autonomy)社会性社会性(Social ability)(Social ability)反应性反应性(Reactivity)(Reactivity)主主动动性性(Pro-activeness)(Pro-activeness)(或或称称“前前 瞻性瞻性”)基于场景性基于场景性(Situatedness)(Situatedness)敏捷性敏捷性(Flexibility)(Flexibility)15 移动性移动性(Mobility)(Mobility)理性理性(Rationality)(Rationa
7、lity)此外,很多学者还提出一些其它特性:此外,很多学者还提出一些其它特性:诚恳性诚恳性(Veracity)(Veracity)友好性友好性(Benevolence)(Benevolence)长寿性(或时间连贯性)长寿性(或时间连贯性)自适应性自适应性(Adaptability)(Adaptability)16Agent的特性的特性Agent弱概念:弱概念:自治性、社会实力(可通信性)、反应自治性、社会实力(可通信性)、反应实力、自发行为实力、自发行为Agent强概念:强概念:学问、信念、意图、承诺等心智状态学问、信念、意图、承诺等心智状态其它属性:其它属性:长寿性、移动性、推理实力、规划实
8、力、长寿性、移动性、推理实力、规划实力、学习和适应实力、诚恳、善意、理性学习和适应实力、诚恳、善意、理性1713.4 Agent理论理论智能Agent的理论模型探讨主要从逻辑、行为、心理、社会等角度动身,对智能Agent的本质进行描述,为智能Agent系统创建奠定基础。18可能世界模型可能世界模型(Possible Worlds Possible Worlds Model)Model)地地位位:Agent理理论论基基础础的的开开创创性性工工作作之之一一。思思想想:将将Agent的的学学问问、信信念念等等特特征征化化为为一一 系系列列“可可能能世世界界”,在在可可能能世世界界模模型型中中包包括对
9、象、属性及其关系。括对象、属性及其关系。优优点点:理理论论基基础础(特特殊殊是是模模态态逻逻辑辑)比比较较完善。完善。缺缺 点点:存存 在在“逻逻 辑辑 万万 能能”(Logical Omniscience)问题。问题。19“意意图图系系统统”(”(Intentional System)Intentional System)作作用用:用用于于描描述述其其行行为为可可用用信信念念、愿愿望望等等理理性性才才智智来来预预料料的的实实体体。分分为为:一一阶阶和和二二阶两种形式。对象、属性及其关系。阶两种形式。对象、属性及其关系。20“意意图图姿姿态态”(”(Intentional Stance)Int
10、entional Stance)意意义义:启发AI学者将信念(Belief)、愿望(Desire)、承诺(Commitment)等人类特有的思想和概念应用于Agent。2113.4.1 理性理性Agent(BDI模型)模型)思思想想:认认为为Agent行行为为可可由由信信念念、愿愿望望和和意图来表达意图来表达作用:已成为经典模型,并被广泛接受作用:已成为经典模型,并被广泛接受Belief信念,信念,Agent对环境的基本看法。对环境的基本看法。Desire愿愿望望,Agent想想要要实实现现的的状状态态,即目标。即目标。Intention意图,目标的子集。意图,目标的子集。2213.4.2 B
11、DIAgent模型模型BDIAgent模型可以通过下列要素描述:一组关于世界的信念;Agent当前准备达到的一组目标;一个规划库,描述怎样达到目标和怎样变更信念;一个意图结构,描述Agent当前怎样达到它的目标和变更信念。23BDI说明器说明器BDI-Interpreterinitialize-state();dooptions:=option-generator(event-queue,B,G,I);selected-options:=deliberate(options,B,G,I);update-intentions(selected-options,I);execute(I);get-
12、new-external-events();drop-successful-attitudes(B,G,I);drop-impossible-attitudes(B,G,I);untilquit2413.4.3 RAO逻辑框架逻辑框架目标:以一种自然的方式描述多目标:以一种自然的方式描述多Agent系统中关于别的系统中关于别的Agent的状态的推理的状态的推理过程。过程。系统的分类:由于多系统的分类:由于多Agent系统太困难,系统太困难,建立一种通用的推理模式的想法是不建立一种通用的推理模式的想法是不现实的,有必要对系统分类以便区分现实的,有必要对系统分类以便区分对待。对待。常识的获得:和单
13、个常识的获得:和单个Agent情形一样,情形一样,常识问题是阻碍推理的大难题。常识问题是阻碍推理的大难题。2513.4.4 换位推理换位推理思思想想:仿仿照照语语言言学学中中的的虚虚拟拟语语气气,即即为为了了对对某某个个Agent在在某某种种场场景景下下的的状状态态或或行行为为进进行行推推想想,设设想想自自己己处处于于那那种种场场景景时时的的状状态态或或行行为为,再再把把这这种种设设想想结结果作为被揣测果作为被揣测Agent的状态或行为。的状态或行为。作作用用:使使得得一一Agent对对其其它它Agent的的状状态态和行为的推理过程变得简洁明白。和行为的推理过程变得简洁明白。2613.4.5
14、动作理论动作理论情景演算是描述动作的主要的形式框架。在情景演算中引入了状态和动作的概念,并利用两条逻辑公理来描述动作与状态的关系。一条公理描述一个动作在满足什么条件的状态之下可能发生,另外一条描述在一个状态之下某个动作发生以后当前状态如何变更。2713.4.6 “言言语语行行为为”理理论论(Speech Acts Theory)地位:这是多地位:这是多Agent交互(通信)的重要交互(通信)的重要理论基础之一。理论基础之一。思想:任何行为都可以等价地表示为思想:任何行为都可以等价地表示为言语行为(既任何行为的含义都可用言语行为(既任何行为的含义都可用言语来表达),甚至认为全部的行为言语来表达)
15、,甚至认为全部的行为都是言语行为。都是言语行为。作用:大大简化了作用:大大简化了Agent之间交互的困难之间交互的困难度。度。28规划库的形式化表示规划库的形式化表示环境状态:State=P1,P2,Pn 目标:Goal=动作模板:Act_template=Agent实力:Ability=2913.5 Agent结构结构Agent结构须要解决的问题包括:Agent由那些模块组成,模块之间如何交互信息,Agent感知到的信息如何影响它的行为和内部状态,如何将这些模块用软件或硬件的方式组合起来形成一个有机的整体。30Agent基本结构基本结构环境Agent感知作用黑箱软件黑箱软件Agent31智能
16、智能Agent的工作过程的工作过程环境交互信息融合信息处理作用交互感知作用32Agent骨架程序骨架程序function Skeleton-Agent(percept)return actionstatic:memory /*Agent的世界记忆的世界记忆*/memory Update-Memory(memory,percept)action Choose-Best-Action(memory)memory Update-Memory(memory,action)return action33Agent的分类的分类依据人类思维的层次模型,可以将Agent分成四类:反应Agent形象思维Agen
17、t抽象思维Agent复合式Agent形象思维Agent和抽象思维Agent也可以合称为认知Agent3413.5.1 反应反应Agent环境当前世界传感器动作效应器条件-动作规则Agent35反应反应Agent程序程序functionReactive-Agent(percept)returnsactionstatic:rules,/*一组条件-动作规则*/stateInterpret-Input(percept)ruleRule-Match(state,rules)actionRule-Actionrulereturnaction3613.5.2 认知认知Agent环境信息融合传感器动作效应器
18、Agent规划学问库目标内部状态37认知认知Agent程序程序function Cognitive-Agent(percept)returns actionstatic:environment,/*描述当前世界环境描述当前世界环境*/kb,/*学问库学问库*/environment Update-World-Model(environment,percept)state Update-Mental-State(environment,state)action Decision-Making(state,kb)environment Update-World-Model(environment,
19、action)return action38BDI结构结构知识信念规划意图目标愿望3913.5.3 复合式复合式Agent决策生成规划反射建模通信感知行动其他智能Agent智能Agent外部世界外部世界预料协作与协商动作恳求或应答信息一般情况紧急情况和简单状况40规划模块规划模块世界的模型(包括其他Agent的模型)经经 验验 库库目标集合目标集合局部规划器决决 策策 生生 成成重新规划规划规划目标41建模模块建模模块世界的模型(包括其他Agent的模型)模型库模型生成和维护预测规划决策生成感知通信建模42通信模块通信模块词法库语法库词义库物理通信语言生成语言理解通信4313.6 Agent通
20、信通信策略对话消息黑板协议通信协作协议44Agent通信中的主要问题通信中的主要问题语义:全部有关的语义:全部有关的Agent必需知道通信必需知道通信语言的语义,消息的语义内容学问是分语言的语义,消息的语义内容学问是分布式问题求解的核心部分。布式问题求解的核心部分。言语行为:通信语言也是一种动作,说言语行为:通信语言也是一种动作,说话是为了使世界的状态发生变更。话是为了使世界的状态发生变更。交互协议:交互协议:Agent之间消息交换的典型之间消息交换的典型模式模式通信语言:传递消息的标准语法。通信语言:传递消息的标准语法。Foundation for Intelligent Physical
21、Agents :/fipa.org45Agent间的消息传递间的消息传递消息发送/传输服务器转换到传输格式从传输格式转换消息M言语行为意图I目标GAgenti消息MAgentj46本体论(本体论(Ontology)本体论是概念化的明确的表示和描述。对某一领域中的概念有共同理解,可以提高沟通和协作的效率,从而提高了软件的重用性。47言语行为言语行为有关言语行为理论的探讨主要集中在如何划分不同类型的言语行为。在Agent通信语言的探讨中,言语行为理论主要用来考虑Agent之间可以交互的信息类型。48FIPA通信动作库通信动作库Accept Proposal接受提议接受提议Agree同意同意Canc
22、el取消取消Call for Proposal要求提议要求提议Confirm确认确认Disconfirm确认为否定确认为否定Failure失败失败Inform通知通知Inform If通知通知 是否是否Inform Ref通知通知 有关对象有关对象Not Understood不理解不理解49Propagate传播传播Propose提议提议Proxy代理代理Query If询问询问 是否是否Query Ref询问询问 有关对象有关对象Refuse拒绝(恳求)拒绝(恳求)Reject Proposal拒绝提议拒绝提议Request恳求恳求Request When恳求恳求 某个条件下执行某个条件下执
23、行Request Whenever恳求恳求 一旦某个条件成立就执行一旦某个条件成立就执行Subscribe预定预定具体说明:具体说明::/fipa.org/repository/cas.html50交互协议交互协议Agent之间的会话常常形成典型模式,这种状之间的会话常常形成典型模式,这种状况下某些消息序列是可知的,这些消息交况下某些消息序列是可知的,这些消息交换的典型模式称为协议。换的典型模式称为协议。Agent间交互的志向状况:间交互的志向状况:Agent充分地理解充分地理解消息的含意和意图,然后依据自身的信念、消息的含意和意图,然后依据自身的信念、目标等心智状态,做出相应的回答目标等心智
24、状态,做出相应的回答比较实际的实现:预先规范这些协议,规定比较实际的实现:预先规范这些协议,规定好消息的依次。好消息的依次。51FIPA英国拍卖协议52通信语言通信语言KQML:由美国ARPA的学问共享支配中提出,规定了消息格式和消息传送系统,为多Agent系统通信和协商供应了一种通用框架。ACL:由FIPA制定的一种规范。与KQML特别相像53KQML一个例子:一个例子:(ask-all:senderA:receiverB:in-reply-toido:reply-withidl:languageProlog:ontologyfoo:content“bar(X,Y)”)54FIPA ACL(
25、inform:senderagent1:receiverhpl-auction-server:content(price(bidgood02)150):in-reply-toround-4:reply-withbid04:languages1:ontologyhpl-auction)消息结构起先通信动作类型消息参数消息内容表达式参数表达式55XMLeXtensibleMarkupLanguage可扩展标记语言可扩展标记语言 XML是用于标记电子文件使其具有结构性的标记语言。XML文件本身只是将文件资料结构化。例如:下面的ACL消息(inform:sender jklabrou:receiver
26、 grosof:content(CPU libretto50 pentium):ontology laptop:language kif)56转换为转换为XML格式后如下:格式后如下:informjklabrougrosof57laptop(CPU libretto50 pentium)kif5813.Agent的的协调协调与与协协作作协调(coordination)与协作(cooperation)是多Agent探讨的核心问题之一。协调是指一组智能Agent完成一些集体活动时相互作用的性质。协作是非对抗的Agent之间保持行为协调的一个特例。59协调协调多Agent系统中的协调是指多个Agen
27、t为了以一样、和谐的方式工作而进行交互的过程。进行协调是希望避开Agent之间的死锁或活锁。死锁指多个Agent无法进行各自的下一步动作;活锁指多个Agent不断工作却无任何进展。60协作协作目前针对Agent协作的探讨大体上可分为两类:将其它领域探讨多实体行为的方法和技术用于Agent协作的探讨。如对策论和力学探讨。从Agent的目标、意图、规划等心智看法动身来探讨多Agent间的协作。61协作规划协作规划协作的动机:某个Agent信任通过协作能带来好处(如提高效率,完成以往单独无法完成的任务)多个Agent在沟通的过程中,发觉它们能够通过协作来实现更大的目标。62协作过程协作过程1)产生需
28、求、确定目标产生需求、确定目标2)协作规划、求解协作结构协作规划、求解协作结构3)寻求协作伙伴寻求协作伙伴4)选择协作方案选择协作方案5)实现目标实现目标6)评估结果评估结果6313.8 多多Agent环境环境MAGEMAGE的主要特点:运行于分布式网络环境用java编写运用模块化的实力通过ADL来描述并生成AgentAgent之间通过ACL通信6413.9 面对面对Agent的软件技术的软件技术在面对Agent的软件开发方法中,应用程序编写为软件Agent,这些Agent之间通过Agent通信语言可以进行比一般消息传递更规范、更明确的通讯。65Agent与对象的异同与对象的异同共同点:共同点
29、:都具有封装性、继承性和多态性。都具有封装性、继承性和多态性。对象的内部状态映射为对象的内部状态映射为Agent的心智状的心智状态。态。互操作。互操作。不同点:不同点:Agent具有自治性,对象只能被动的被具有自治性,对象只能被动的被调用。调用。Agent之间交互运用通信语言,对象之之间交互运用通信语言,对象之间交互是通过相互调用方法。间交互是通过相互调用方法。66AO与与OO对象是对现实世界中的被动实体的抽象,Agent是对主动实体的很好的抽象。Agent支持用于表示智能的结构,如信念、承诺等。Agent支持基于言语行为理论的高级交互,不同于对象之间常见的消息发送和接收。对象是通过外部来进行
30、限制的(白箱限制),相反,Agent有自治性,不能干脆从外部进行限制(黑箱限制)。67主要的基于主要的基于Agent的方法的方法1)Gaia方法:Wooldridge,Jennings和Kinny在1999年提出了面对Agent分析与设计的Gaia方法学。2)多Agent工程方法学:Wood和DeLoach提出了多Agent工程方法学MaSE。3)AUML:Odell等人提出了对UML语言的扩充AgentUML语言AUML语言。68Gaia方法方法Gaia是一种同时支持微观级(Agent结构)和宏观级(Agent社会与组织结构)的Agent开发的一般方法。分析过程第一步是找到系统中的角色,其次
31、步是对角色之间的交互进行建模。每个角色包含四个属性:责任、许可、活动和协议设计阶段第一步是把角色映射到确定的Agent类型,然后对不同的Agent类型创建适当的Agent实例;其次步是确定一个和多个Agent中角色所须要的服务模块;最终一步是为Agent之间的通信表示建立熟人模块。69MaSEMaSE在一般性及应用领域上类似于Gaia,MaSE的目的是引导设计者怎样从初始的系统规范说明到Agent系统的实现。MaSE在逻辑上被分为七段流水线:捕获目标、应用用例、精练角色、创建Agent类、构造会话、编译Agent类、系统设计。70AUMLOdell、Parunak和Bauer提出了Agent交
32、互协议AIP的三层表示方法。该方法不仅须要表达语义的修改,而且须要UML可视化语言的修改。AUML已经被提交给UML标准委员会,作为一个建议包含在UML2.0中。7113.10 Mobile Agentl节约网络带宽移动Agent干脆在数据端执行处理,与客户端不须要进行中间结果的传输,只返回最终的结果。l供应实时的远程交互在一些远程限制系统中,如外太空探测器的限制、网络的时延使得远程实时限制变得不行能,发送MobileAgent实行远端的本地限制可解决该问题。72l支持离线计算用户派遣出MobileAgent程序后,可以断开网络连接,而Agent将在网络上自主运行。Agent完成任务后,当它发
33、觉用户设备重新连上网络时,就返回计算结果。l实现载荷卸载对于一些计算实力弱的设备,如个人数字助理,可以把计算打包成Agent程序,发送到计算实力强的设备上进行计算。73 l 供应定制化服务 运用Agent,客户端可以依据服务器端供应的底层操作函数,编写满足自己特定须要的服务程序,然后发送到服务器端运行。l 易于分发服务 在接受Mobile Agent技术的分布式应用中,服务的更变更得特别简洁,比如在电信网的管理中,当业务须要变更时,只需把新的服务程序发送到相应的服务节点上,用不着人力去一个一个节点地安装。74 l 增加应用的强壮性 移动Agent的工作方式削减了应用对网络连接牢靠性的要求,它的
34、自主性又使它具备对环境的反应实力,因此能建立更容错的分布系统。l 供应平台无关性 移动Agent是跨平台运行的。移动代理应用编程不存在程序的移植问题,便于应用的快速开发。l 供应更自然的电子商务模式 用移动Agent代表用户参与电子交易,买家可在网上自由找寻卖者,查询商品种类,商谈价格,卖家也可主动上门向买家举荐商品。7513.11 若干前沿问题探讨若干前沿问题探讨当前AI中存在的“鸿沟”解决“鸿沟”的主要思路完全自主Agent完全自主Agent的关键技术完全自主Agent的典型应用7613.11.1当前AI中存在的“鸿沟”StuartJ.Russell的观点在1995年获得IJCAI-95的
35、“ComputersandThoughtAward”杰出青年大奖时所作的学术报告RationalityandIntelligence指出“AI是一个由其探讨的问题而非方法所定义的领域。”(“AIisafielddefinedbyitsproblems,notitsmethods.”StuartJ.Russell,1995)77当前当前AI中存在的中存在的“鸿沟鸿沟”(续(续1)当前,AI中存在的最大问题是:如何填补基于抽象、非底层表示(Ungroundedrepresentations)的高层推理(High-levelreasoning)与建立底层表示(Groundedrepresentati
36、ons)的传感数据说明(Interpretingrawsensordata)之间的“鸿沟”。78当前当前AI中存在的中存在的“鸿沟鸿沟”(续(续2)2001年,Stanford高校计算机系的年轻教授DaphneKoller在获得IJCAI-01的“ComputersandThoughtAward”杰出青年大奖时所作的学术报告传统AI中被广泛接受的分析、分解方法正面临着很大的挑战:在解决困难问题时,人们往往很自然地接受分而治之的方法,将其分解为每个“小片”(Fragmentation),等每个“小片”都取得进展后,再进行综合集成以得到最终的结果。但缺憾的是,往往每个子问题都各自分家且相互远离,而
37、且是离得越来越远,最终很难将它们综合集成起来。79当前当前AI中存在的中存在的“鸿沟鸿沟”(续(续3)“In AI,as in many communities,we have the tendency to divide a problem into well-defined pieces,and make progress on each one.But as we make progress,the problems tend to move away from each other.”Daphne Koller,20018013.11.2 解决鸿沟的主要思路解决鸿沟的主要思路Daphn
38、eKoller教授围围着如何解决上述问题(即填补高层推理与底层数据说明之间的“鸿沟”),提出一种解决方法,就是建立连接的三座“概念桥梁”(Conceptualbridges),分别是:表示(Representation)推理(Reasoning)学习(Learning)81解决鸿沟的主要思路(续解决鸿沟的主要思路(续1)另一种代表性的解决方法是,美国德克萨斯高校奥斯汀分校(UniversityofTexasatAustin)的PeterStone在2007年获得IJCAI-07的“ComputersandThoughtAward”杰出青年大奖时所作的学术报告PeterStone.Learnin
39、gandmultiagentreasoningforautonomousagents.In:Proceedingsof2007InternationalJointConferenceonArtificialIntelligence(IJCAI-07),pp.13-30.82解决鸿沟的主要思路(续解决鸿沟的主要思路(续2)建立完全自主的Agents(Completeautonomousagents),这些Agents具有高度的鲁棒性和敏捷性,它们可感知环境,进行高层认知和决策,在环境中进行自主执行,即具有学习、交互、组合及合作等实力。他认为这种探讨方法可分为两条基本路途:基本算法探讨,主要包括机
40、器学习、多Agents系统(MAS);应用探讨,主要包括实现面对特定的困难环境的完全自主Agents,以及从面对特定应用的自主Agents实现中总结发觉普遍规律。83解决鸿沟的主要思路(续解决鸿沟的主要思路(续3)美国华盛顿高校的PedroDomings教授提出的马尔可夫逻辑网络(MarkovLogicNetworks)将谓词逻辑与统计学习方法有机地结合起来可填补AI中存在的高层与底层之间的鸿沟8413.11.3 完全自主完全自主Agent的关键技术的关键技术PeterStone还指出,自从1983年TomMitchell获得“ComputersandThoughtAward”杰出青年大奖并做
41、了关于机器学习的学术报告后,从机器学习的观点来看,面对分类和预料的有监督学习(Supervisedlearning)方法得到了极大发展,并涌现出很多通用的工具包。同时,面对数据聚类的无监督学习(Unsupervisedlearning)方法也取得了很大进展。然而,从自主Agents的观点来看,最近出现的增加学习(Reinforcementlearning)似乎更加重要,因为增加学习在很多序列决策问题中能够自主收集所须要的训练数据,学习到将状态映射为行为的策略,并从延迟奖赏中(Delayedreward)学习如何选择正确的行为,它实现了探究(Exploration)与开发(Exploitatio
42、n)之间的权衡。8513.11.4 完全自主完全自主Agent的主要应用的主要应用PeterStone给出了当前完全自主Agents的四个主要应用领域,分别是:足球机器人(Robotsoccer)无人驾驶车辆(Autonomousvehicles)拍卖Agents(Biddingagents)自主计算(Autonomiccomputing)。其中,机器人足球和无人驾驶车辆是属于“物理Agents”(Physicalagents),而拍卖Agents和自主计算则属于“软件Agents”。这些应用充分展示了机器学习与多Agents推理的紧密结合,它涉及自适应及层次表达、分层学习、迁移学习(Tran
43、sferlearning)、自适应交互协议、Agent建模等关键技术。86课外阅读论文(可选课外阅读论文(可选12篇):篇):WooldridgeM,JenningsNR.Intelligent agents:theory and practice.Knowledge Engineering Review,1995,10(2):115-152Jennings N R,Sycara K,Wooldridge M.A roadmap of agent research and development.Autonomous Agents and Multi-Agent Systems.Boston:
44、KluwerAcademicPublishers,1998,275-306PeterStone.Learning and multiagent reasoning for autonomous agents.In:Proceedings of 2007 International Joint Conference on Artificial Intelligence(IJCAI-07),pp.13-3087 其它值得研读的论文(可选):其它值得研读的论文(可选):Intelligent agents:theories,architectures,and languages.Mobile sof
45、tware agents:an overview.A mobile agent based service architecture for Internet telephony.A mobile agent-based advanced service architecture for wireless Internet telephony:design,implementation,and evaluation.Intelligent agents on the Web:a review.【注】:上述论文一般均可通过【注】:上述论文一般均可通过google搜寻到。搜寻到。88欢迎指责指正,感谢!89