《121全等三角形(教案).doc》由会员分享,可在线阅读,更多相关《121全等三角形(教案).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、121全等三角形(教案)【教学目标】知识与技能目标:掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。掌握全等三角形的性质。体会图形的变换思想,逐步培养动态研究几何意识。初步会用全等三角形的性质进行一些简单的计算。过程与方法目标:围绕全等三角形的对应元素这一中心,。设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本课的中心问题-全等三角形的性质,经历理解性质的过程。,体会图形的变换思想,逐步培养学生动态研究几何图形的意识。情感与态度目标:学生在富有趣味的活动中进行全等三角形的学习,提供学生发现规律的空间,激发学生学
2、习兴趣。教学重点:全等三角形的性质教学难点:寻找全等三角形中的对应元素教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。学情分析:这节课是学了三角形的基本知识后的一节课、只要实际操作不出错、学生一定能学好。课前准备 :全等三角形纸片【教学教程】一、创设情境,引入新课1、问题:各组图形的形状与大小有什么特点?一般学生都能发现这两个图形是完全重合的。归纳:能够完全重合的两个图形叫做全等形。2.学生动手操作新- 课-标- 第- 一-网在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。问题:如何在另一张纸板再剪一个三角形DEF,使它与ABC全
3、等?3.板书课题:全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“”表示,读着“全等于”如图中的两个三角形全等,记作:ABCDEF二、 探究全等三角形中的对应元素1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2学生讨论、交流、归纳得出:.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。全等三角形的性质1
4、.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边 有什么关系?对应角呢? 全等三角形的性质: 全等三角形的对应边相等全等三角形的对应角相等 2.用几何语言表示全等三角形的性质如图:ABC DEFABDE,ACDF,BCEF(全等三角形对应边相等)AD,BE,CF(全等三角形对应角相等)探求全等三角形对应元素的找法1.动画(几何画板)演示(1)图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?归纳:两个全等的三角形经过一定的转换可以重合一般是平移、翻折、旋转的方法(2)说出每个图中各对全等三角形的对应边、对应角归纳:从运动角度可以很轻松解决找对应元
5、素的问题可见图形转换的奇妙2. 动画(几何画板)演示图中的两个三角形通过怎样的变换才能重合?用式子表示全等关系.并说出其中的对应关系.CDE3. 归纳:找对应元素的常用方法有两种:(1)从运动角度看a翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素b旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素c平移法:沿某一方向推移使两三角形重合来找对应元素(2)根据位置元素来推理 a.有公共边的,公共边是对应边;b.有公共角的,公共角是对应角;c.有对顶角的,对顶角是对应角;d.两个全等三角形最大的边是对应边,最小的边也是对应边;e.两个全等三角形最大的角是对应
6、角,最小的角也是对应角;三、课堂练习练习1.ABDACE,若B25, BD6,AD4,你能得出ACE中哪些角的大小,哪些边的长度吗?为什么 ?练习2.ABCFED 写出图中相等的线段,相等的角;图中线段除相等外,还有什么关系吗?请与同伴交流并写出来.四、课堂小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,探索了找两个全等三角形对应元素的方法,并且利用性质解决简单的问题。找对应元素的常用方法有三种:(一)从运动角度看1平移法:沿某一方向推移使两三角形重合来找对应元素2翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素3旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素(二)根据位置元素来推理1全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边2全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(三)根据经验来判断1. 大边对应大边,大角对应大角2. 公共边是对应边,公共角是对应角五、课堂作业必做题:课本第38页1、2、选做题:第3题六、板书设计 121 全等三角形 一、概念 二、全等三角形的性质 三、性质应用 例题四、小结:找对应元素的方法 运动法:翻折、旋转、平移 位置法:对应角对应边,对应边对应角 经验:大边大边,大角大角公共边是对应边,公共角是对应角