《材料科学基础-第五章1-概要优秀PPT.ppt》由会员分享,可在线阅读,更多相关《材料科学基础-第五章1-概要优秀PPT.ppt(70页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第五第五(1)(1)章章 材料的塑性变形材料的塑性变形 The plastic deformation of materials材料不同,其弹、塑性性能差异很大材料不同,其弹、塑性性能差异很大塑性变形,对锻、轧、拉、挤有重要作用,塑性变形,对锻、轧、拉、挤有重要作用,对铸造、热处理则对铸造、热处理则 要尽量避开要尽量避开 弹性变形(弹性变形(elastic deformation)塑性变形(塑性变形(plastic deformation)外力外力 材料材料外形尺寸变化外形尺寸变化内部组织、性能变化内部组织、性能变化 塑性变形塑性变形 1.1.弹性和粘弹性弹性和粘弹性(Elasticity a
2、nd(Elasticity and Viscoelasticity)Viscoelasticity)一一.弹性变形弹性变形(Elastic Deformation)二二.低碳钢的拉伸试验低碳钢的拉伸试验三三.弹性变形弹性变形:可逆性可逆性四四.外力去处后可完全复原外力去处后可完全复原五五.r=r0 原子处于平衡位置原子处于平衡位置 位能位能 U 为为 Umin 最稳定最稳定 F=0 r r0 即偏离其平衡位置即偏离其平衡位置 F引力引力 斥力斥力 力图使原子复原其力图使原子复原其 原来的平衡位置原来的平衡位置 变形消逝变形消逝本质本质:可从原子间结合力的可从原子间结合力的角度来了解之角度来了解
3、之应力应力-应变关系应变关系(Stress-Strain behavior)虎克定律虎克定律(Hookes law)s s=Ee e t t=Gg g 广义虎克定律广义虎克定律 矩阵表达式矩阵表达式二二 弹性模量弹性模量 E(Elastic modulus)表征晶体中原子间结合力强弱的物理量表征晶体中原子间结合力强弱的物理量,反映原子间的结反映原子间的结合力合力,是组织结构不敏感参数。对晶体而言,系各向异性是组织结构不敏感参数。对晶体而言,系各向异性 沿原子最密排的晶向沿原子最密排的晶向 Emax 沿原子最疏的晶向沿原子最疏的晶向 Emin 工程上工程上E系材料刚度的度量系材料刚度的度量 弹性
4、变形量随材料不同而异弹性变形量随材料不同而异 E-modulus of elasticity(Youngs modulus)G-shear modulus u-poissons ratioG=E/2(1+u)三三 弹性的不完整性弹性的不完整性 1.包申格效应包申格效应(Bauschinger effect)经预先加载产生少量变形(经预先加载产生少量变形(4%)而后同向加载则而后同向加载则 e 而后反向加载则而后反向加载则 e 2.弹性后效弹性后效 (Elastic aftereffect)在弹性极限在弹性极限 e范围内,应变滞后于外范围内,应变滞后于外加应力,并和时间有关的现象加应力,并和时间
5、有关的现象 3.弹性滞后弹性滞后(Elastic lag)由于应变落后于应力,在由于应变落后于应力,在-e e曲线上曲线上加载曲线与卸载线不重合,而形成一加载曲线与卸载线不重合,而形成一封闭回线封闭回线四 粘弹性牛顿粘性流淌定律 h-h-粘度系数粘度系数既与时间有关,又具有可回复的弹性变形性质既与时间有关,又具有可回复的弹性变形性质高分子材料的重要力学特性之一高分子材料的重要力学特性之一Maxwell和和Vigt粘弹性体变形模型粘弹性体变形模型 2.单晶体(单晶体(Single Crystal)的塑性变形)的塑性变形 塑性变形塑性变形滑移滑移 Slip孪生孪生 Twinning晶界滑动晶界滑动
6、 Grain boundary Sliding扩散性蠕变扩散性蠕变 Diffusional Creep一一 滑移(滑移(Slip)l1.现象现象单晶体的拉伸试验单晶体的拉伸试验塑性变形的不均匀性塑性变形的不均匀性滑移带(滑移带(Slip band)滑移线滑移线(Slip line)沿一定的晶面、一定晶向进行沿一定的晶面、一定晶向进行滑移面滑移面Slip plane滑移方向滑移方向Slip directionl2.滑移的晶体学特征滑移的晶体学特征 滑移面和滑移方向滑移面和滑移方向 晶体中原子密度最大的面和方向晶体中原子密度最大的面和方向 Slip plane Slip direction 为什么
7、为什么?fcc:滑移面:滑移面111 滑移方向滑移方向 hcp:0001 c/a1.633 0001,1010,1011 c/a1.633 bcc:Tm/4 112 Tm/4 Tm/2 110 0.8Tm 123滑移系滑移系 晶体中一个滑移面和该面上一个滑移方向组成晶体中一个滑移面和该面上一个滑移方向组成滑移的空间取向滑移的空间取向(Slip system)晶体结构不同,滑移系的数目不同晶体结构不同,滑移系的数目不同(Number of slip systems)fcc:111 有四组,而每个有四组,而每个(111)面上共有三个面上共有三个110,故共有故共有4312个滑移系个滑移系 hcp:
8、1个个(0001)面面 3个个方向方向133个滑移系个滑移系 bcc:110面共有面共有6组,每个组,每个110上有上有2个个方向方向 12组组 112 1个个 24组组 123 1个个 故共有故共有6212124148个滑移系个滑移系 一般滑移系愈多,滑移过程中可能实行的空间取向也就愈一般滑移系愈多,滑移过程中可能实行的空间取向也就愈多,这种材料的塑性就愈好。多,这种材料的塑性就愈好。3.3.滑移所需临界分切应力滑移所需临界分切应力滑移所需临界分切应力滑移所需临界分切应力 CriticalCritical(resolvedresolved)shear stressshear stress滑移
9、滑移圆柱形试样单向拉伸时作用在滑移面上沿滑移方向的圆柱形试样单向拉伸时作用在滑移面上沿滑移方向的其中其中为作用在试样横断面上的拉伸应力为作用在试样横断面上的拉伸应力为取向因子(为取向因子(Schmid)晶体滑移晶体滑移 必需使必需使t tc(临界分切应力)(临界分切应力)t tc 取决晶体中原子间的结合力,即与晶体类型、纯度(杂取决晶体中原子间的结合力,即与晶体类型、纯度(杂 质)、温度以及变形速度有关,与外力无关。质)、温度以及变形速度有关,与外力无关。一切影响位错滑移难易程度的因素均影响一切影响位错滑移难易程度的因素均影响 t tc屈服强度屈服强度当当 90或或 90 时,时,s 晶体不能
10、产生滑移晶体不能产生滑移只有当只有当 45 时,时,smin 首先发生滑移首先发生滑移 2t tc快速确定具有最大取向因子coscos的滑移系方法映象规则:映象规则:利用投影图中心部分的八个取向三角形利用投影图中心部分的八个取向三角形4.4.晶体在滑移时的转动晶体在滑移时的转动晶体在滑移时的转动晶体在滑移时的转动 (rotationrotation)滑移面上发生相对位移滑移面上发生相对位移晶体转动晶体转动空间取向发生变化空间取向发生变化晶体滑移晶体滑移在拉伸时使滑移面和滑移方在拉伸时使滑移面和滑移方向渐渐转到与应力轴平行向渐渐转到与应力轴平行在压缩时使滑移面和滑移方向在压缩时使滑移面和滑移方向
11、渐渐转到与应力轴垂直渐渐转到与应力轴垂直转动的缘由转动的缘由两对力偶:两对力偶:为上下两滑移面的法向分应力为上下两滑移面的法向分应力在该力偶作用下,使滑移面转至轴在该力偶作用下,使滑移面转至轴向平行向平行垂直于滑移方向的分切应力垂直于滑移方向的分切应力在该力偶作用下,使滑移方向转到最大在该力偶作用下,使滑移方向转到最大分切应力方向分切应力方向是是/滑移方向的真正引起滑滑移方向的真正引起滑移的有效分切应力移的有效分切应力晶体滑移晶体滑移 晶体转动晶体转动 位向变更位向变更 取向因子变更取向因子变更 分切应力值变更分切应力值变更几何几何硬硬软软化现象化现象5.多系滑移多系滑移 Multiple s
12、lip 外力下,滑移首先发生在分切应力最大,且t tc的滑移系原始滑移系(primary slip system)上。但由于伴随晶体转动空间位向变更另一组原取向不利(硬取向)滑移系渐渐转向比较有利的取向(软取向),从而起先滑移,形成两组(或多组)滑移系同时进行或交替进行,称为多系滑移。综上所述,滑移变形的基本特点:综上所述,滑移变形的基本特点:)滑移变形系不匀整的切变,它只集中在某滑移变形系不匀整的切变,它只集中在某些晶面上;些晶面上;)滑移结果两部分晶体产生相对移动,移动滑移结果两部分晶体产生相对移动,移动的距离的距离nb,仍保持晶体学的一样性;仍保持晶体学的一样性;)沿着确定的晶面和晶向进
13、行,滑移系较多沿着确定的晶面和晶向进行,滑移系较多的材料为(的材料为(fcc)一般具有较好塑性;一般具有较好塑性;)在切应力作用下,且在切应力作用下,且t tc;)滑移同时,滑移面和滑移方向将发生转)滑移同时,滑移面和滑移方向将发生转动;动;)实质位错沿滑移面的运动过程)实质位错沿滑移面的运动过程二二 孪生孪生(Twin)滑移系较少的滑移系较少的hcp,或在低温下或者当滑移受阻时晶体会,或在低温下或者当滑移受阻时晶体会 以另一种变形方式以另一种变形方式孪生变形进行孪生变形进行 Deformation by twinning 1.孪生变形过程孪生变形过程 孪生是在切应力作用下沿特定的晶面(孪生是
14、在切应力作用下沿特定的晶面(twin plane)与晶向(与晶向(twin direction)产生的均匀切变。发生孪生的)产生的均匀切变。发生孪生的区域称为孪晶带(区域称为孪晶带(twin band)。)。l不同晶体结构往往有不同孪生面和孪生方向:不同晶体结构往往有不同孪生面和孪生方向:l fcc:111 hcp:1012l bcc:1122.孪晶的形成孪晶的形成变形(机械)孪晶:变形产生变形(机械)孪晶:变形产生 呈透镜状或片状呈透镜状或片状生生 长长 孪孪 晶晶 :晶体生长过程中形成:晶体生长过程中形成退退 火火 孪孪 晶晶 :退火过程中形成:退火过程中形成形核形核长大长大两个阶段两个阶
15、段变形孪晶的生长大致可分为变形孪晶的生长大致可分为 孪生临界切应力比滑移的大得多,只有在滑移很难进孪生临界切应力比滑移的大得多,只有在滑移很难进行的条件下才会发生。例如,行的条件下才会发生。例如,Mg孪生所需孪生所需t tc=4.934.3=4.934.3MPa,而滑移时而滑移时t tc仅为仅为0.49MPa。但孪晶的长大。但孪晶的长大速度极快(与冲击波的速度相当)有相当数量的能量被释速度极快(与冲击波的速度相当)有相当数量的能量被释放出来,故常可听见明显可闻放出来,故常可听见明显可闻“咔、嚓咔、嚓”声,也称孪生吼声,也称孪生吼叫。叫。通过单纯孪生达到的变形量是极为有限的,如通过单纯孪生达到的
16、变形量是极为有限的,如Zn单晶,孪单晶,孪生只能获得生只能获得7.27.4伸长率,远小于滑移所作的贡献。但伸长率,远小于滑移所作的贡献。但是孪生变形变更了晶体的位向,从而可使晶体处于更有利是孪生变形变更了晶体的位向,从而可使晶体处于更有利于发生滑移的位置,激发进一步的滑移,获得很大变形量,于发生滑移的位置,激发进一步的滑移,获得很大变形量,故间接贡献却很大。故间接贡献却很大。孪生的机制:孪生时每层晶面的位置是借助一个不全位错孪生的机制:孪生时每层晶面的位置是借助一个不全位错 (肖克莱)的移动而成的,是借助位错增殖的(肖克莱)的移动而成的,是借助位错增殖的 极轴机制来实现的。极轴机制来实现的。3
17、.孪生形变的意义孪生形变的意义l孪生的主要特点:孪生的主要特点:l)孪生是匀整切变,)孪生是匀整切变,l)相对移动距离不是孪生方向的原子间距的整数)相对移动距离不是孪生方向的原子间距的整数l 倍,孪生面两边晶体位向不同成镜面对称;倍,孪生面两边晶体位向不同成镜面对称;l)切变区内与孪生面平行的每一层原子面均相对)切变区内与孪生面平行的每一层原子面均相对l 其邻面沿孪生方向位移了确定距离,且每一其邻面沿孪生方向位移了确定距离,且每一层层l 原子相对于孪生面的切变量和它与孪生面的原子相对于孪生面的切变量和它与孪生面的距距l 离成正比;离成正比;l)孪生变更了晶体取向,因此出现孪晶的试样经)孪生变更
18、了晶体取向,因此出现孪晶的试样经l 重新抛光,腐蚀后仍能显现出来。重新抛光,腐蚀后仍能显现出来。l)在切应力作用下,且)在切应力作用下,且t tc但但tc(孪生孪生)tc(滑移滑移)l)实质借助一个不全位错运动而成,存在形核与)实质借助一个不全位错运动而成,存在形核与l 长大过程。长大过程。三三 扭折扭折 Kink hcp的Cd压缩时,外力与(0001)面平行,故在(0001)面的t0,若此时孪生过程的阻力也很大,不能进行。为了使晶体的形态与外力相适应,当外力超过某一临界值时,晶体将会产生局部弯曲,即出现扭折现象。扭折区晶体的取向发生了不对称变更。扭折是为适应外力而发生的不匀整局部塑性变形方式
19、,扭折是为适应外力而发生的不匀整局部塑性变形方式,对变形起确定的协调作用,使应力得到松弛,使晶体不致发对变形起确定的协调作用,使应力得到松弛,使晶体不致发生断裂。另外由于扭折引起晶体的再取向,即有可能使扭折生断裂。另外由于扭折引起晶体的再取向,即有可能使扭折带区域中的滑移系处于有利取向,促使晶体形变实力进一步带区域中的滑移系处于有利取向,促使晶体形变实力进一步发挥。发挥。造成扭折的缘由是滑移面的位错在局部地区集中,从而引起的晶格弯曲。四四四四 塑变的位错机制塑变的位错机制塑变的位错机制塑变的位错机制1.滑移的位错机制滑移的位错机制 依据刚性滑移模型推导出的理论切变强度依据刚性滑移模型推导出的理
20、论切变强度(G一般为一般为104105MPa),即使接受修正值),即使接受修正值与实测值(约为与实测值(约为110MPa)之间相差)之间相差34个数量级。个数量级。位错概念引入解决这一冲突。因为位错运动时只要求位错概念引入解决这一冲突。因为位错运动时只要求其中心旁边少数原子移动很小的距离(小于一个原子间距),其中心旁边少数原子移动很小的距离(小于一个原子间距),因此所需的应力要比晶体作整体刚性滑移时小得多。这样借因此所需的应力要比晶体作整体刚性滑移时小得多。这样借助于位错的运动就可实现晶体逐步滑移。助于位错的运动就可实现晶体逐步滑移。位错运动首先遇到点阵阻力位错运动首先遇到点阵阻力派纳力:派纳
21、力:从上式可知从上式可知ab则则t t 故晶体的滑移通常发生在原子最密集故晶体的滑移通常发生在原子最密集的晶面并沿着最密集的晶向进行。的晶面并沿着最密集的晶向进行。除点阵阻力外,位错与点缺陷、其他位错、晶界、第二相除点阵阻力外,位错与点缺陷、其他位错、晶界、第二相 质点等交互作用,对位错的滑移运动均会产生阻力,导致晶体质点等交互作用,对位错的滑移运动均会产生阻力,导致晶体强化强化 A.晶体在滑移过程中的位错增殖(晶体在滑移过程中的位错增殖(prliferation of dislocations)滑移线台阶滑移线台阶nb200nm(上千个(上千个b相同的位错滑移来实现)故晶相同的位错滑移来实现
22、)故晶体塑变时产生的大量滑移带,必然是为数众多的位错进行滑移的结果。体塑变时产生的大量滑移带,必然是为数众多的位错进行滑移的结果。一般经充分退火的金属,位错密度约为一般经充分退火的金属,位错密度约为 106 cm-2 经强烈塑性变形后,位错密度增至经强烈塑性变形后,位错密度增至 1012 cm-2 晶体的滑移过程不仅没有降低位错数量,反而大晶体的滑移过程不仅没有降低位错数量,反而大大增加,这意味着,在变形过程中位错以某种机制大增加,这意味着,在变形过程中位错以某种机制增殖了。增殖了。(1)FrankRead 位错源位错源(FrankRead Source)由弗兰克瑞德源提出的一种位错增殖机制由
23、弗兰克瑞德源提出的一种位错增殖机制F-R源动作过程源动作过程 刃位错刃位错AB的两端的两端A和和B被位错用结点钉扎住被位错用结点钉扎住 位错线各段均受到滑移力位错线各段均受到滑移力ftb且与位错线相垂直(法线方向)且与位错线相垂直(法线方向)位错线各点移动的线速度一样,但角速度不同。位错线发生弯曲,位错线各点移动的线速度一样,但角速度不同。位错线发生弯曲,甚至两端分别绕甚至两端分别绕AB发生回转。位错线上各处位错性质也随之变。发生回转。位错线上各处位错性质也随之变。m,n两处同属纯螺型位错,但位错性质恰好相反,相吸!相迁时,两处同属纯螺型位错,但位错性质恰好相反,相吸!相迁时,彼此便会抵消,这
24、使原来整根位错线断开成两部分,外面为封闭彼此便会抵消,这使原来整根位错线断开成两部分,外面为封闭的位错环,里面为一段连接的位错环,里面为一段连接A和和B的位错线,在线张力作用下变直的位错线,在线张力作用下变直复原到原始状态。在外力的接着作用下,它将重复上述过程,每复原到原始状态。在外力的接着作用下,它将重复上述过程,每重复一次就产生一个位错环,从而造成位错的增殖,并使晶体产重复一次就产生一个位错环,从而造成位错的增殖,并使晶体产生可观的滑移量。生可观的滑移量。FR源发生作用所需的临界切应力为源发生作用所需的临界切应力为 只有只有t tc时才能使时才能使FR源开动,并源源不断地产生位错环。源开动
25、,并源源不断地产生位错环。在塑性变形过程中,位错不断地生成,位错间的交截越来越频在塑性变形过程中,位错不断地生成,位错间的交截越来越频繁。繁。可动位错线段也越短可动位错线段也越短L tc(加工硬化加工硬化)。FR位错增殖位错增殖机制已为试验所证明。机制已为试验所证明。(2)双交滑移位错增殖机制)双交滑移位错增殖机制 螺位错的滑移面不是唯一的螺位错的滑移面不是唯一的 若螺型位错经交滑移后再转回到与原滑移面相平行的晶面上接若螺型位错经交滑移后再转回到与原滑移面相平行的晶面上接着扩展时,则称双交滑移。着扩展时,则称双交滑移。螺位错经双交滑移后可形成一对刃型位错的割阶。由于这对割螺位错经双交滑移后可形
26、成一对刃型位错的割阶。由于这对割阶与原位错线不在同一滑移面上,这就使原位错在平行于原滑移阶与原位错线不在同一滑移面上,这就使原位错在平行于原滑移面的滑移面上滑移时产生了一个面的滑移面上滑移时产生了一个FR源。于是,在双交滑移状源。于是,在双交滑移状况下,可使位错不断得到增殖和发展。况下,可使位错不断得到增殖和发展。B.扩展位错的束集与交滑移扩展位错的束集与交滑移 扩展位错系由两个不全位错和中间夹的一片层错所构成。层扩展位错系由两个不全位错和中间夹的一片层错所构成。层错能的因素也必定影响扩展位错的密度:错能的因素也必定影响扩展位错的密度:若层错面上存在杂质原子或其它障碍时,可使该处的能量增若层错
27、面上存在杂质原子或其它障碍时,可使该处的能量增高高扩展位错宽度将会缩小,甚至重新收缩成原来的全位错,成扩展位错宽度将会缩小,甚至重新收缩成原来的全位错,成为束集(可看成位错扩展的反过程)为束集(可看成位错扩展的反过程)扩展位错束集时,不仅两不全位错的间距减小,层错宽窄,扩展位错束集时,不仅两不全位错的间距减小,层错宽窄,而且位错线变长、弯曲、形成弧线。因此,形成束集须要能量,而且位错线变长、弯曲、形成弧线。因此,形成束集须要能量,称为束集能,束集能越大,越难束集。称为束集能,束集能越大,越难束集。束集对面心立方晶体的交叉滑移过程有重要的作用。由于束集对面心立方晶体的交叉滑移过程有重要的作用。由
28、于扩展位错只能在原滑移面上滑移,若要进行交滑移,扩展位错扩展位错只能在原滑移面上滑移,若要进行交滑移,扩展位错必需首先束集为全位错,然后再由该全位错交滑移到另一滑移必需首先束集为全位错,然后再由该全位错交滑移到另一滑移面上并重新分解为扩展位错,接着进行滑移。面上并重新分解为扩展位错,接着进行滑移。扩展位错的束集与交滑移的过程可因温度扩展位错的束集与交滑移的过程可因温度热激活而得热激活而得到促进。到促进。C.位错的交割(位错的交割(Crossings of dislocations)晶体中存在大量的具有不同柏氏矢量的位错。因此,当一晶体中存在大量的具有不同柏氏矢量的位错。因此,当一个位错沿其滑移
29、面滑动时,往往会迁到不在此滑移面上的其它个位错沿其滑移面滑动时,往往会迁到不在此滑移面上的其它位错(通常将穿过此滑移面的其它位错称为林位错)的阻碍位错(通常将穿过此滑移面的其它位错称为林位错)的阻碍(即切过林位错)而接着前进。通常把位错线彼此切割(即彼(即切过林位错)而接着前进。通常把位错线彼此切割(即彼此交叉通过)的过程叫做位错的交割。此交叉通过)的过程叫做位错的交割。位错的交割对于晶体的硬化,以及空位和间隙原子的产生位错的交割对于晶体的硬化,以及空位和间隙原子的产生有着重要的意义。有着重要的意义。(1)两个相互垂直的刃位错的交割:)两个相互垂直的刃位错的交割:位错位错xy向下移动与不动位错
30、向下移动与不动位错AB交割后,位错线交割后,位错线AB上上产生一个长度与产生一个长度与b1相等刃型割阶相等刃型割阶PP,由于,由于PP仍位于仍位于Pxy面上可滑动面上可滑动位错位错AB和和xy交截后,则相应在各自位错线上产生一交截后,则相应在各自位错线上产生一段扭折段扭折PP和和QQ,属螺型且均在原来的滑移面上,属螺型且均在原来的滑移面上,能沿原滑移面滑移。在线张力的作用下,此扭折将会能沿原滑移面滑移。在线张力的作用下,此扭折将会消退。消退。(2)刃型位错和螺型位错的交截)刃型位错和螺型位错的交截 当一个运动的刃型位错当一个运动的刃型位错AA和一个不动的螺型位错和一个不动的螺型位错 BB在在
31、时的交截:时的交截:AA上产生一长度与上产生一长度与b2相等的相等的 MM刃型割阶,它的存在给刃型割阶,它的存在给AA接着运动增加阻力;接着运动增加阻力;BB上产生一长度与上产生一长度与b1相等的相等的NN扭折(刃型)扭折(刃型)(3)两螺型位错的交截)两螺型位错的交截 AA运动运动BB固定固定交截后各自产生了一个割阶交截后各自产生了一个割阶MM和和NN(均属刃型)(均属刃型)由于由于MM与与b1所组成滑移面所组成滑移面原位错线原位错线AA的运动方向,的运动方向,从而成为螺型位错接着运动的阻碍。除非割阶产生攀移从而成为螺型位错接着运动的阻碍。除非割阶产生攀移随之运动;同样随之运动;同样BB位错
32、所产生的刃型割阶位错所产生的刃型割阶NN也具有与也具有与上述相像的性质。上述相像的性质。螺型位错割阶的运动可分三种状况:螺型位错割阶的运动可分三种状况:a)割阶的高度只有)割阶的高度只有12个原子间距,此时螺位错运动个原子间距,此时螺位错运动可以把割阶拖着走,所谓拖着走是指割阶通过攀移运动可以把割阶拖着走,所谓拖着走是指割阶通过攀移运动而使其跟着螺位错运动,而在其后留下一排点缺陷(空而使其跟着螺位错运动,而在其后留下一排点缺陷(空位或间隙原子)位或间隙原子)b)割阶高度在几个原子间距到)割阶高度在几个原子间距到20nm之间,此时位错之间,此时位错不能拖着割阶一起运动。在外力作用下,位错的前进就
33、不能拖着割阶一起运动。在外力作用下,位错的前进就 会在其后留下一对拉长了的刃位错线段(常成为位错偶)。会在其后留下一对拉长了的刃位错线段(常成为位错偶)。这种位错偶为降低应变能常常会断开而留下一个长的位错偶,这种位错偶为降低应变能常常会断开而留下一个长的位错偶,使位错仍回复原来带割阶的状态,而长的位错偶又常会再进使位错仍回复原来带割阶的状态,而长的位错偶又常会再进一步裂成小的位错环。一步裂成小的位错环。c)割阶高度再)割阶高度再20nm以上,此时割阶两端的刃位错相隔以上,此时割阶两端的刃位错相隔太远,它们之间的相互作用较小,它们可以各自独立地在各太远,它们之间的相互作用较小,它们可以各自独立地
34、在各自的滑移面上运动,并以割阶为轴,在滑移面上旋转。这事自的滑移面上运动,并以割阶为轴,在滑移面上旋转。这事实上也是在晶体中产生位错的一种方式。实上也是在晶体中产生位错的一种方式。而刃型位错的割阶与柏氏矢量所组成的面,一般都与原位而刃型位错的割阶与柏氏矢量所组成的面,一般都与原位错线的滑移方向一样,能与原位错一起滑移,但此时割阶的错线的滑移方向一样,能与原位错一起滑移,但此时割阶的滑移面并不确定是晶体的最密排面。故运动时割阶段所受到滑移面并不确定是晶体的最密排面。故运动时割阶段所受到的晶格阻力较大,但总的来说,这类滑移割阶给原位错所带的晶格阻力较大,但总的来说,这类滑移割阶给原位错所带来的滑移
35、阻力要小于螺位错的割阶。来的滑移阻力要小于螺位错的割阶。由割阶而引起的对位错运动的障碍常称为割阶硬化。由割阶而引起的对位错运动的障碍常称为割阶硬化。D 位错的塞积位错的塞积 pile-up of dislocation 由同一位错源产生的,具有相同由同一位错源产生的,具有相同b的位错在滑移面上的位错在滑移面上运动,若遇到障碍(如晶界、孪晶界、固定位错、杂运动,若遇到障碍(如晶界、孪晶界、固定位错、杂质原子等)质原子等)受阻,而外力又不足以克服障碍的阻力时,位错便被受阻,而外力又不足以克服障碍的阻力时,位错便被迫积累在障碍物前形成塞积群。迫积累在障碍物前形成塞积群。Sessile disloca
36、tionFrank sessile dislocationLomer-Coffrell barrier塞积群中的位错所受的作用力:塞积群中的位错所受的作用力:(1)外加切应力外加切应力t t0所产生的滑移力所产生的滑移力 Fd t t0 b (2)位错间的相互排斥力位错间的相互排斥力 (3)障碍物的阻力障碍物的阻力 仅作用在领先位错上仅作用在领先位错上平衡时平衡时k为系数为系数刃位错刃位错 k1-v刃位错刃位错 k1依据每个位错的受力状况,可导出每个位错的位置,以依据每个位错的受力状况,可导出每个位错的位置,以xi表示从障碍物起先计到第表示从障碍物起先计到第i个位错距离:个位错距离:塞积群四周
37、所产生的应力场与一个具有塞积群四周所产生的应力场与一个具有nb的大位错所产生的大位错所产生应力场相当。明显(应力场相当。明显(1)此应力场反作用于位错源,并有)此应力场反作用于位错源,并有可能使其停止开动可能使其停止开动加工硬化加工硬化由此可见在塞积群中位错的分布是不匀整的,越靠近障碍由此可见在塞积群中位错的分布是不匀整的,越靠近障碍物,位错间距越小。物,位错间距越小。位错塞积群的一个重要效应就是在它的前端会引起应力集位错塞积群的一个重要效应就是在它的前端会引起应力集中,其数值等于外加切应力中,其数值等于外加切应力n倍:倍:t t0:无外加硬化时所需切应力无外加硬化时所需切应力a:a:与材料有
38、关常数与材料有关常数0.30.50.30.5(2)nt,塞积群中的螺位错可通过交滑移越过障碍,塞积群中的螺位错可通过交滑移越过障碍(3)t甚至可把障碍物摧毁甚至可把障碍物摧毁(4)如塞积群位于晶界,应力集中达到确定值后,也可促发相邻晶粒位错源如塞积群位于晶界,应力集中达到确定值后,也可促发相邻晶粒位错源开动开动2.孪生的机制孪生的机制 孪晶区域各晶面的相对位移距离是孪孪晶区域各晶面的相对位移距离是孪生方向原子间距的分数值,这表明孪生生方向原子间距的分数值,这表明孪生时每层晶面的位移应借一个不全位错的时每层晶面的位移应借一个不全位错的移动而造成。移动而造成。位错增殖的极轴机制:位错增殖的极轴机制
39、:fcc 中中 OA、OB和和OC三条位错线相交于结点三条位错线相交于结点O,OA、OB不在滑移面上,属不动位错不在滑移面上,属不动位错极轴极轴位错,位错,OC为可动的不全位错,且只能绕为可动的不全位错,且只能绕极轴转动,每当它在(极轴转动,每当它在(111)面上扫过一)面上扫过一圈,就产生一个单原子层的孪晶,同时圈,就产生一个单原子层的孪晶,同时又沿着螺旋面上升一层,这样不断转动,又沿着螺旋面上升一层,这样不断转动,上述过程逐层地重复进行,就在晶体中上述过程逐层地重复进行,就在晶体中形成一个孪晶区域。形成一个孪晶区域。至于扭折带晶体位向有突变,这个至于扭折带晶体位向有突变,这个取向变更的过渡
40、区系由一系列同号的刃取向变更的过渡区系由一系列同号的刃型位错排列所构成。型位错排列所构成。3.3.多晶体的塑性变形多晶体的塑性变形 Plastic Deformation of polycrystalline MaterialsPlastic Deformation of polycrystalline Materials 多晶体变形要受到晶界和相邻不同位向晶粒的约束。四周多晶体变形要受到晶界和相邻不同位向晶粒的约束。四周晶粒同时发生相适应的变形来协作。一般多晶体为多系滑移,晶粒同时发生相适应的变形来协作。一般多晶体为多系滑移,高的加工硬化率,变形抗力增大,强度显著提高,应力高的加工硬化率,变
41、形抗力增大,强度显著提高,应力-应变应变曲线无曲线无只出现只出现、阶段。阶段。一一.晶粒取向的影响晶粒取向的影响 外力外力F作用下作用下处于有利取向晶粒先开始滑移处于有利取向晶粒先开始滑移处于不利取向晶粒还末开始滑移处于不利取向晶粒还末开始滑移变形不均匀变形不均匀为保持连续性,四周晶粒变形必需相互制约,相互协调为保持连续性,四周晶粒变形必需相互制约,相互协调 多晶体塑性变形时要求至少有多晶体塑性变形时要求至少有5个独立的滑移系进行滑个独立的滑移系进行滑移。移。随意变形均可用随意变形均可用 exx eyy ezz nxy nyz nxz fcc,bcc 滑移系多滑移系多塑性好塑性好 hcp 滑移
42、系少滑移系少塑性差塑性差二二.晶界的阻滞效应晶界的阻滞效应 多晶体塑性变形的另一个特点是晶界对变形过程的阻碍多晶体塑性变形的另一个特点是晶界对变形过程的阻碍作用。对只有作用。对只有23个晶粒的试样拉伸后呈竹结状。个晶粒的试样拉伸后呈竹结状。因晶界(尤其是大角晶界)处因晶界(尤其是大角晶界)处原子排列不规则,点阵畸变严原子排列不规则,点阵畸变严峻,再加上晶界两侧的晶粒取峻,再加上晶界两侧的晶粒取向不同,滑移面和滑移方向彼向不同,滑移面和滑移方向彼此不一样之原因。此不一样之原因。晶内发生较大变形,晶界晶内发生较大变形,晶界处变形量较少,塑变抗力处变形量较少,塑变抗力大,可视察到位错的塞积大,可视察
43、到位错的塞积位错在晶界上位错在晶界上产生塞积产生塞积留意留意 晶界本身的强度对多晶体的加工硬化贡献不大,晶界本身的强度对多晶体的加工硬化贡献不大,而多晶而多晶 体加工硬化的主要缘由来自晶界两侧晶粒的位向体加工硬化的主要缘由来自晶界两侧晶粒的位向差差 晶界阻滞效应只在变形早期影响较大,因早期晶界阻滞效应只在变形早期影响较大,因早期位错较小位错较小 晶界阻滞效应的大小还与晶体的结构类型有关晶界阻滞效应的大小还与晶体的结构类型有关 hcp结构的晶界阻滞效应要比结构的晶界阻滞效应要比 fcc,bcc 类型的晶类型的晶体明显体明显 滑移系较小滑移系较小三三 晶粒大小对机械性能的影响晶粒大小对机械性能的影
44、响 1.对室温机械性能的影响对室温机械性能的影响 晶粒愈细、晶界愈多晶粒愈细、晶界愈多强化效应强化效应细晶强化细晶强化 ss sb HV Strengthening by Grain Size Re-duction 较好塑性较好塑性,因细晶的晶内和晶界旁边应变因细晶的晶内和晶界旁边应变差较小,变形较匀整,差较小,变形较匀整,有可能断裂前承受大量的变形有可能断裂前承受大量的变形 细晶具有良好的综合机械性能。细晶具有良好的综合机械性能。Hall-Petch公式:公式:屈服强度屈服强度相当于单晶体的屈服强度相当于单晶体的屈服强度晶粒平均直径晶粒平均直径常数,相邻晶粒位向差对位错运动的影响关系常数,相
45、邻晶粒位向差对位错运动的影响关系与晶界结构有关与晶界结构有关系普遍的关系式,金属材料如此,亚晶的系普遍的关系式,金属材料如此,亚晶的尺寸与尺寸与ss的关系,塑性材料流变应力和晶粒的关系,塑性材料流变应力和晶粒尺寸,脆性材料的脆断应力与晶粒大小关尺寸,脆性材料的脆断应力与晶粒大小关系以及金属的疲惫强度与晶粒大小间的关系以及金属的疲惫强度与晶粒大小间的关系也可用霍尔系也可用霍尔-佩奇公式来表达佩奇公式来表达2.对高温强度的影响对高温强度的影响 低温时:晶界强度低温时:晶界强度晶内强度晶内强度 加上晶界两侧晶粒位向差影响加上晶界两侧晶粒位向差影响 晶界对滑移有阻滞作用晶界对滑移有阻滞作用等强温度等强
46、温度Tk:s晶界晶界 s晶内晶内高温时则不同,有两种不同的变形机制:高温时则不同,有两种不同的变形机制:(1)晶粒沿晶界滑动(晶界滑动机制)晶粒沿晶界滑动(晶界滑动机制)当当T Tm/2时,以晶粒沿晶界的相对滑移方式进行时,以晶粒沿晶界的相对滑移方式进行 T扩散实力扩散实力,且原子沿晶界扩散速率,且原子沿晶界扩散速率 沿晶内的。沿晶内的。故高温时晶界似流体一样,呈现粘滞性故高温时晶界似流体一样,呈现粘滞性变形抗力变形抗力 沿晶界滑移沿晶界滑移(2)扩散性蠕变机制)扩散性蠕变机制 蠕变:在确定蠕变:在确定t C(300 C)下,当应力大于某一值时,)下,当应力大于某一值时,即使外力不再增加,而塑
47、性变形随时间延长而会缓慢地增加即使外力不再增加,而塑性变形随时间延长而会缓慢地增加现象。现象。ABCD为多晶体中一为多晶体中一晶粒,晶粒,AB、CD晶界晶界受拉,在其旁边易于受拉,在其旁边易于产生空位,空位浓度产生空位,空位浓度较高,较高,AC、BD受压,受压,空位浓度较低。空位浓度较低。扩散扩散空位空位蠕变蠕变与与有关有关存在空位浓度梯度导致空位向存在空位浓度梯度导致空位向AC、BD定向移动,定向移动,原子向原子向AB、CD定向移动,从而使晶粒沿拉伸方向定向移动,从而使晶粒沿拉伸方向伸长,即使在恒应力状况下,随时间延长也会不伸长,即使在恒应力状况下,随时间延长也会不断发生应变断发生应变扩散性
48、蠕变扩散性蠕变 T,d 扩散性蠕变速率扩散性蠕变速率 因此一般高温合金都希望具有较粗晶粒因此一般高温合金都希望具有较粗晶粒四四.多晶体的应力多晶体的应力-应变曲线应变曲线与单晶相比,一般不出现硬化第一阶段,易滑移阶段。只与单晶相比,一般不出现硬化第一阶段,易滑移阶段。只有有、线性硬化和抛物性硬化阶段,呈现明显的晶界阻线性硬化和抛物性硬化阶段,呈现明显的晶界阻滞效应和很高的硬化系数。滞效应和很高的硬化系数。4.合金的塑性变形合金的塑性变形 Plastic Deformation of AlloysPlastic Deformation of Alloys一一 单相固溶体合金的塑性变形单相固溶体合
49、金的塑性变形 Plastic Deformation of SinglePhase alloy 1.屈服现象屈服现象 yield phenomenon 拉伸曲线拉伸曲线 没有明显屈服点没有明显屈服点Yield point 0.20.2 应力平台的应力点称为下屈服点,在几乎是恒定的应力下应力平台的应力点称为下屈服点,在几乎是恒定的应力下发生的延长称为屈服伸长。应力平台上每一个波动对应于一个发生的延长称为屈服伸长。应力平台上每一个波动对应于一个新的形变带,即新新的形变带,即新Lders bond,当,当Lders bond扩展至试样整扩展至试样整个长度后,屈服伸长阶段就告结束,应力又随应变单调增加
50、,个长度后,屈服伸长阶段就告结束,应力又随应变单调增加,起先匀整塑性变形阶段。起先匀整塑性变形阶段。拉伸曲线应力突然下降的点称上屈服拉伸曲线应力突然下降的点称上屈服点:试样起先屈服,发生明显的塑性点:试样起先屈服,发生明显的塑性变形。在试样表面视察到与纵轴(拉变形。在试样表面视察到与纵轴(拉伸轴)约呈伸轴)约呈45的应变痕迹的应变痕迹吕德斯吕德斯带(带(Lders bond)它与试样的未变)它与试样的未变形部分有明显的界线。它与滑移带不形部分有明显的界线。它与滑移带不同,同,Lders bond穿过了试样横截面穿过了试样横截面上的各个晶粒。它是一种宏观可见皱上的各个晶粒。它是一种宏观可见皱纹,