《2021年沪科版九年级上册数学知识点整理.pdf》由会员分享,可在线阅读,更多相关《2021年沪科版九年级上册数学知识点整理.pdf(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-.-.word.zl.第 21章二次函数与反比例函数【知识点 1 函数 y=ax2+bx+c 的解析式】1.形如2yaxbxca0的函数叫做 x 的二次函数;2.形如(0)kykx的函数叫做 x 的反比例函数;典例 1在以下函数表达式中,表示y 是 x 的二次函数关系的有。21 3yx;(5)yx x;213yx;3(1)(2)yxx;4221yxx;22(1)yxx;2yaxbxc典例 2 在以下函数表达式中,表示y 是 x 的反比例函数关系的有。32yx;kyx;31yx;12yx;21yx;12yx;2xy典例 3 假设函数22(2)ayax是反比例函数,那么a=,假设是二次函数,那么
2、a=。【知识点 2 二次函数的图象与性质】函数2(,0)yaxbxc a b ca是常数,a的值a0 a0 性质1.抛物线开口,并向无限延伸;2.对称轴是,顶点坐标,;3.当 x 时,y 随 x 的增大而减小,当 x 时,y随 x 的增大而增大;4.抛物线有最点,当 x=时,y1.抛物线开口,并向;2.对称轴是,顶点坐标,3.当 x 时,y随 x 的增大而减小,当 x 时,y 随 x 的增大而增大;4.抛物线有最点,当 x=时,精品w o r d 可编辑资料-第 1 页,共 19 页-.-.word.zl.有最值,2_44acbya;y 有最值,2_44acbya;典例 4 二次函数 y=ax
3、2+bx+c 的 y 与 x 的局部对应值如表:那么以下判断中正确的选项是x-1 0 1 2 y-3 1 3 1 A.抛物线开口向上B.抛物线与 y 轴交于负半轴C.当 x=4 时,y0 D.方程 ax2+bx+c=0 的正根在 2 与 3 之间典例 5二次函数 y=ax2+bx+c 的图象过点A1,2,B3,2,C5,7假设点 M-2,y1,N1,y2,K8,y3也在二次函数y=ax2+bx+c 的图象上,那么以下结论正确的选项是A.y1y2y3 By2y1y3 Cy3y1y2 Dy1y3y2【知识点 3 二次函数解析式确实定】1.待定系数法:一般式:y=ax2+bx+c(a0)(条件:任意
4、点坐标)顶点式:2y()(0)a xhk a条件:坐标+任意点坐标交点式:12()()ya xxxx条件:与轴两交点坐标及任意点坐标2.平移规律:左加右减,上加下减典例 6抛物线 yax2+bx+c 与 x 轴交于点 A3,0,对称轴为 x1,顶点 C 到 x轴的距离为2,那么此抛物线表达式为。精品w o r d 可编辑资料-第 2 页,共 19 页-文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1
5、文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X
6、10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F
7、3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7
8、T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U
9、7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W
10、1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7
11、U7T1文档编码:CF1X3U7X10I4 HA3Q4W1F3G7 ZJ5T4R7U7T1-.-.word.zl.典例 7抛物线在 x 轴上所截线段为4,顶点坐标为 2,4,那么这个函数的关系式为。典例 8抛物线 y=x2+bx+c 向右平移 2 个单位再向下平移3 个单位,所得图象的表达式为y=x2-2x-3,那么 b=,c=。典例 9假设抛物线 y=x2+2bx+4 的顶点在坐标轴上,那么抛物线的解析式为。【知识点 4 二次函数系数与图象】考察角度 1:判断 a、b、c 与 0 比拟大小,决定了开口方向,和共同决定了对称轴的位置 左同右异,决定了抛物线与y 轴交点;填 a、b、c考察角度
12、2:判断 b2-4ac,b2-4ac0图象与坐标轴有个交点,b2-4ac=0(图象与坐标轴有个交点),b2-4ac0;2a+b=0;b2-4ac0;a+b+c0;9a-3b+c0;3a+c0;2c0;4ac2b;2a-b0 时,图像与 x轴有个交点;2当=0 时,图像与 x轴有个交点;3当=b2-4ac 0时,图像与 x 轴交点。典例 13二次函数yax2bxc(a0)的图象如下图,求:精品w o r d 可编辑资料-第 5 页,共 19 页-文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R
13、10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3
14、L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码
15、:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8
16、S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3
17、 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1
18、E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y1
19、0 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5-.-.word.zl.(1)函数解析式_;(2)当 x_时,y 随 x 增大而减小;(3)由图象答复:当 y 0 时,x 的取值范围_;当 y 0 时,x _;当 y 0 时,x 的取值范围_;(4)方程 ax2bxc=3 的解为:_典例 14二次函数y=ax2+bx+c(a0)的图象如下图,且关于x 的一元二次ax
20、2+bx+c-m=0 没有实数根,那么 m 的取值范围是。【知识点6 二次函数的应用】典例 15 某商场要经营一种新上市的文具,进价为20元/件试营销阶段发现:当销售单价是 25元时,每天的销售量为250件;销售单价每上涨1 元,每天的销售量就减少 10 件1写出商场销售这种文具,每天所得的销售利润 w元与销售单价 x元之间的函数关系式;2求销售单价为多少元时,该文具每天的销售利润最大;3商场的营销部结合上述情况,提出了A、B 两种营销方案:方案 A:该文具的销售单价高于进价且不超过30元;方案 B:每天销售量不少于10件,且每件文具的利润至少为25元请比拟哪种方案的最大利润更高,并说明理由精
21、品w o r d 可编辑资料-第 6 页,共 19 页-文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7
22、M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5
23、Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA
24、8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3
25、N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档
26、编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1
27、K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5-.-.word.zl.典例 16王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855yxx,
28、其中 ym是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m(1)请写出抛物线的开口方向、顶点坐标、对称轴(2)请求出球飞行的最大水平距离(3)假设王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,那么球飞行路线应满足怎样的抛物线,求出其解析式【知识点7 反比例函数图象与性质】典例 17在函数21ayxa 为常数的图象上有三点-3,y1,-1,y2,2,y3,那么函数值y1,y2,y3的大小关系是。精品w o r d 可编辑资料-第 7 页,共 19 页-文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8
29、S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3
30、 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1
31、E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y1
32、0 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R
33、10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3
34、L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码
35、:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5-.-.word.zl.典例 18如以下图,直线lx轴于点 P,且与反比例函数1212(0)(0)kkyxyxxx及图像分别交于点A,B,连接 OA,OB,OAB 的面积为 2,那么12kk=。第 18题 图第 19题图【知识点 8 函数与一次函数综合】典例 19 如图,
36、A-4,n,B2,-4是一次函数 y=kx+b 和反比例函数myx的图像的两个交点。1求反比例函数和一次函数的解析式;2求直线 AB 与 x 轴的交点 C 的坐标及 AOB 的面积;3由图像求:不等式0mkxbx的解集;精品w o r d 可编辑资料-第 8 页,共 19 页-文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R1
37、0F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L
38、5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:
39、CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S
40、2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3
41、HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E
42、6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10
43、 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5-.-.word.zl.典例 20如图,在平面直角坐标系xOy 中,直线122yx与 x 轴交于点 A,与 y 轴交于点 C。抛物线y=ax2+bx+c 的对称轴是32x,且经过 A、C 两点,与 x 轴的另一交点为点 B。1 直接写出点B 的坐标;求抛物线解析式2假设点P 为直线AC 上方的抛物线上的一点,连接PA,PC 求 PAC 的面积的最大值,并求出此时点P的坐标精品w o r d 可编辑资料-第 9 页,共 19 页-文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10
44、 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R1
45、0F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L
46、5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:
47、CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S
48、2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3
49、HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E
50、6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5文档编码:CV1K8S2Y3O3 HM7M1E6P5Y10 ZA8R10F3N3L5-.-.word.zl.第 22 章 相似三角形【知识点 1 比例的根本性质】知识点请查阅教材或笔记典例 11,329,578abcabc且求 2a+4b-3c=;2假设 x 是 a、b 的比例中项,那么。典例 2 假设723