大一高等数学复习题2(含答案).pdf

上传人:H****o 文档编号:56672179 上传时间:2022-11-02 格式:PDF 页数:9 大小:178.69KB
返回 下载 相关 举报
大一高等数学复习题2(含答案).pdf_第1页
第1页 / 共9页
大一高等数学复习题2(含答案).pdf_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《大一高等数学复习题2(含答案).pdf》由会员分享,可在线阅读,更多相关《大一高等数学复习题2(含答案).pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、更多各科期末考试学习资料答案加QQ146958 2255 全套已整理工程数学二复习题(教师用)一、选择题:1、下列等式中有一个是微分方程,它是(D)A、)(uvvuvuB、vuvvuvu2C、dxeydedxdyxx)(D、043yyy解:选项 A 和 B 是求导公式,选项C 为恒等式,选项D 符合微分方程的定义2、下列方程中有一个是一阶微分方程,它是(C)A、yyxyxy22)(B、0)(5)(7542xyyyC、0)()(2222dyyxdxyxD、043yyyx3、若级数1nna与1nnb都发散,则(C)A、1)(nnnba发散B、1nnnba发散C、1)(nnnba发散D、122)(n

2、nnba发散解:由nnnbaa推知若选项C 收敛,则1nna收敛,与题设矛盾,故选C 4、级数1nna的部分和数列nS有界是该级数收敛的(A)A、必要非充分条件B、充分非必要条件C、充要条件D、既非充分也非必要条件5、级数1nnqa(a 为常数)收敛的充分条件是(A)A、|q|1 B、q=1 C、|q|1 D、q1 时级数收敛6、若级数1nna收敛,那么下列级数中发散的是(B)A、1100nnaB、1)100(nnaC、100+1nnaD、1100nna解:选项 B 中,因为0100)100(limnna,所以该级数发散7、若级数1nna发散,则(D)A、0limnnaB、)(lim21nnn

3、naaaSSC、1nna任意加括号后所成的级数必发散D、1nna任意加括号后所成的级数可能收敛解:选项A 和 B 均为级数发散的充分条件,但非要条件。若级数发散,则任意加括号后所成级数可能收敛也可能发散8、若级数1nna收敛,则下述结论中,不正确的是(C)A、1212)(nnnaa收敛B、1nnka收敛)0(kC、1|nna收敛D、0limnna解:选项 A 中因为14321212)()()(nnnaaaaaa所以 A 正确选项 B 中由级数收敛性质知该级数收敛,所以B 正确选项 D 是级数收敛的必要条件,所以D 正确选项 C 中原级数收敛,1|nna可能收敛也可以发散9、无穷级数1)0()1

4、(nnnnuu收敛的充分条件是(C)文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2

5、J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2

6、F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W

7、1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6

8、R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:C

9、G2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT

10、9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2A、),2,1(1nuunnB、0limnnuC、),2,1(1nuunn,且0limnnuD、11)()1(nnnnuu收敛解:所给级数为交错级数,选项C 为交错级数判断收敛性的莱布尼茨定理中的条件10、设),2,1(10nn

11、un,则下列级数中必定收敛的是(D)A、1nnuB、1)1(nnnuC、1nnuD、12)1(nnnu11、在球02222zzyx内部的点是(C)A、(0,0,2)B、(0,0,-2)C、)21,21,21(D、)21,21,21(解:球的标准方程为1)1(222zyx,是以(0,0,1)为球心,1 为半径的球面,经验算选项C 中的点到球心的距离为12312、设函数22),(yxxyyxfz,则下列各结论中不正确的是(D)A、22),1(yxxyxyfB、22),1(yxxyyxfC、22)1,1(yxxyyxfD、22),(yxxyyxyxf13、设函数z=f(x,y)在点(x0,y0)处存

12、在对x,y 的偏导数,则f x(x0,y0)=(B)A、xyxfyxxfx),(),2(lim00000B、xyxxfyxfx),(),(lim00000C、xyxfyyxxfx),(),(lim00000D、0000),(),(limxxyxfyxfx解:根据偏导数定义知选项C 和 D 显然错误选项 A 中,xyxfyxxfx),(),2(lim00000=),(22),(),2(lim20000000yxfxyxfyxxfxx选项 B 中,文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R

13、2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG

14、2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9

15、W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q

16、6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:

17、CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 H

18、T9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE

19、1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2xyxxfyxfx),(),(lim00000=),(),(),(lim0000000yxfxyxfyxxfxx14、二元函数z=f(x,y)的两个偏导数存在,且0,0yzxz,则(D)A、当 y 保持不变时,f(x,y)是随 x 的减少而单调增加的B、当 x 保持不变时,f(x,y)是随 y 的增加而单调增加的C、当 y 保持不变时,f(x,y)是随 x 的增加而单调减少的D、当 x 保持不变时,f(x,y)是

20、随 y 的增加而单调减少的解:由0 xz知当 y 保持不变时,f(x,y)是 x 的单调增加函数;由0yz知当 x 保持不变时,f(x,y)是 y 的单调减少函数;15、函数 z=f(x,y)在点(x0,y0)处可微的充分条件是(D)A、f(x,y)在点(x0,y0)处连续B、f(x,y)在点(x0,y0)处存在偏导数C、0),(),(lim00000yyxfxyxfzyxD、0),(),(lim00000yyxfxyxfzyx,其中22)()(yx解:二元函数在点(x0,y0)连续或偏导数存在均不能保证在此点可微由全徽分的定义知选项D 正确16、已知函数22),(yxyxyxf,则yyxfx

21、yxf),(),((B)A、2x-2y B、x+y C、2x+2y D、x-y 解:设 u=x+y,v=x-y,则 f(u,v)=uv,从而 f(x,y)=xy yyxfxyxf),(),(17、已知函数xyyxyxxyf22),(,则yyxfxyxf),(,),(分别为(A)A、-1,2y B、2y,-1 C、2x+2y,2y+x D、2y,2x 解:设 u=xy,v=x+y,则 f(u,v)=(x+y)2-xy=v2-u 所以 f(x,y)=y2-x 18、点),(00yx使0),(yxfx且0),(yxfy成立,则(D)文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6

22、R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:C

23、G2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT

24、9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1

25、Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码

26、:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1

27、HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 Z

28、E1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2A、),(00yx是),(yxf的极值点B、),(00yx是),(yxf的最小值点C、),(00yx是),(yxf的最大值点D、),(00yx可能是),(yxf的极值点解:0),(yxfx且0),(yxfy是),(yxf在),(00yx有极值的必要而非充分条件19、设区域D 是单位圆122yx在第一象限的部分,则二重积分Dxyd(

29、C)A、221010 xyxydydxB、21010yxydydxC、21010yxydxdyD、102202sin21drrd解:在直解坐标系下:2210101010 xyDxydydxxydxdyxyd在极坐标系下:103201020cossinsincosdrdrdrrrdxydD20、1010),(xdyyxfdx(D)A、xdxyxfdy1010),(B、1010),(dxyxfdyC、1010),(xdxyxfdyD、1010),(ydxyxfdy解:改变积分次序后,积分区域可记为10,10|),(yxyyxD21、若Ddxdy1,则积分区域D 可以是(C)A、由 x 轴,y 轴及

30、 x+y-2=0 所围成的区域B、由 x=1,x=2 及 y=2,y=4 所围成的区域C、由|x|=1/2,|y|=1/2 所围成的区域D、由|x+y|=1,|x-y|=1 所围成的区域解:由二重积分的几何意义可知 D 的面积为1,画出草图可知选项A、B、D 所给区域面积均为 2,选项 C 所给区域的面积为1 二、填空题:1、微分方程0yyx满足条件1)1(y的解是(xy1)2、微分方程0)1()1(dyxdxy的通解是(Cyx)1)(1()文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2

31、J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2

32、F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W

33、1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6

34、R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:C

35、G2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT

36、9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1

37、Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2解:xdxydy11,于是Cxyln)1ln()1ln(8、设yxz,则 dz=(dyyxydxxyxy222)4、yydxyxfdydxyxfdy0202110),(),(交换二次积分的次序为(102),(xxdyyxfdx)5、已知)2,2,1(),4,1,1(ba,则ba(-9),a与b的夹角为(43)6、二元函数yxz的定义域是(222(,)|24,Dx yxyxy)。三、计算题1、求级数7538642xx

38、xx的收敛域,并求和函数。解:122)(nnnxxa212121|2)22(lim)()(limxnxxnxaxannnnnn当1|2x即1|x时收敛,当1|2x即1|x时发散当 x=1 时,原级数为12nn发散,当x=1 时,原级数为1)2(nn发散所收敛域为(1,1)令1122)(nnnxxS,则 S(0)=0 xnxnnnxxxxdtntdttS010122212)1|(|12)()1|(|)1(21)(2222xxxxxxS2、将函数xexxf3)(展开成 x 的幂级数。参考答案:解:1!nnxnxe),(x1!)1(nnnxnxe),(x文档编码:CG2F3D8B1I1 HT9W1G

39、9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2

40、J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2

41、F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W

42、1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6

43、R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:C

44、G2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT

45、9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2从而133!)1()(nnnxnxexxf),(x3、级数2ln11nnn是否收敛?如果收敛,是绝对收敛还是条件收敛?参考答案:解:因nnn1ln1|u|,而21nn发散,故2ln1nn发散。因此原级数不是绝对收敛,显然nnln11ln1,,3,2n,且0ln1limnn,故由莱布尼兹判别法知原级数条件收敛。

46、4、已知1,1,4a(),1,2,2b(),求a在b上的投影。参考答案:1 1 1(2)(4)2=-9a b|PrPr3|bba ba bbj aj ab5、设sinuzev,而uxy,vxy求zx。参考答案:zzuz vxuxvxsincosuuyevev(sin()cos()xyeyxyxy6、(2,1)xyze计算函数在点处的全微分。参考答案:22(2,1)(2,1),2,xyxyzzzzyexeeexyxy所求全微分222dze dxe dy文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1

47、Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码

48、:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1

49、HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 Z

50、E1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档编码:CG2F3D8B1I1 HT9W1G9C5J4 ZE1Q6R2J10Y2文档

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁