《2021年高中数学必修一、必修四、必修五知识点.pdf》由会员分享,可在线阅读,更多相关《2021年高中数学必修一、必修四、必修五知识点.pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-.-.word.zl.高中数学必修一、必修四、必修五知识点一、知识点梳理必修一第一单元1.集合定义:一组对象的全体形成一个集合.2.特征:确定性、互异性、无序性.3.表示法:列举法1,2,3,、描述法 x|P、韦恩图、语言描述法不是直角三角形的三角形 4.常用的数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*.5.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:x|x2=55.关系:属于、不属于、包含于(或)、真包含于、集合相等.6.集合的运算 1交集:由所有属于集合A 且属于集合B 的元素所组成的集合;表示为:BA数
2、学表达式:BxAxxBA且性质:ABBAAAAA,2并集:由所有属于集合A 或属于集合B 的元素所组成的集合;表示为:BA数学表达式:BxAxxBA或性质:ABBAAAAAA,3补集:全集I,集合IA,由所有属于I 且不属于A 的元素组成的集合。表示:ACI数学表达式:AxIxxACI且方法:韦恩示意图,数轴分析.注意:区别与、与、a与 a、与 、(1,2)与1,2;AB 时,A 有两种情况:A与A.假设集合 A 中有 n)(Nn个元素,那么集合A 的所有不同的子集个数为n2,所有真子集的个数是n2-1,所有非空真子集的个数是22n。空集是指不含任何元素的集合。0、和的区别;0与三者间的关系。
3、空集是任何集合的子集,是任何非空集合的真子集。条件为BA,在讨论的时候不要遗忘了A的情况。符号“,是表示元素与集合之间关系的,立体几何中的表达点与直线面的关系;符号“,是表示集合与集合之间关系的,立体几何中的表达面与直线(面)的关系。8.函数的定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作y=fx,xA,其中x叫做自变量.x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合fx|xA叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为
4、函数的定义域。求函数的定义域时列不等式组的主要依据是:|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 1 页,共 18 页-.-.word.zl.(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各局部都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.求函数的值域的方法:先考虑其定义域(1)观察法(2)配方法(3)代换法9.两个
5、函数的相等:当且仅当两个函数的定义域和对应法那么与表示自变量和函数值的字母无关都分别一样时,这两个函数才是同一个函数.10.映射的定义:一般地,设A、B是两个集合,如果按照某种对应关系f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,那么,这样的对应包括集合A、B,以及集合A到集合B的对应关系f叫做集合A到集合B的映射,记作f:AB.由映射和函数的定义可知,函数是一类特殊的映射,它要求A、B非空且皆为数集.11.函数的三种表示法:解析法、列表法、图象法12.函数的单调性(局部性质)1增函数设函数 y=f(x)的定义域为I,如果对于定义域I 内的某个区间D 内的任意两个自变量x1
6、,x2,当 x1x2时,都有f(x1)f(x2),那么就说f(x)在区间 D 上是增函数.区间 D 称为 y=f(x)的单调增区间.如果对于区间D 上的任意两个自变量的值x1,x2,当 x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间 D 称为 y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;2 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:1 任取 x1,
7、x2 D,且 x11,且nN*当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数此时,a的n次方根用符号na表示式子na叫做根式,这里n叫做根指数,a叫做被开方数当n是偶数时,正数的n次方根有两个,这两个数互为相反数此时,正数a的正的n次方根用符号na表示,负的n次方根用符号na表示正的n次方根与负的n次方根可以合并成naa0 由此可得:负数没有偶次方根;0 的任何次方根都是0,记作00n结论:当n是奇数时,aann当n是偶数时,)0()0(|aaaaaann2分数指数幂规定:)1,0(*nNnmaaanmnm)1,0(11*nNnmaaaanmnmnm0 的正分数指数幂等于0,
8、0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂3有理指数幂的运算性质 1rasrraa),0(Qsra;2rssraa)(),0(Qsra;3srraaab)(),0,0(Qrba一般地,无理数指数幂),0(是无理数aa是一个确定的实数有理数指数幂的运算性质同样适用于无理数指数幂|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 4 页,共 18 页文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B
9、1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8
10、T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G
11、6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV
12、7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6
13、C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X
14、3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:
15、CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4-.-.word.zl.Nalog4.一般地,函数)1a,0a(ayx且叫做指数函数,其中x 是自变量,函数的定义域为R5.指数函数的性质图象特征函数性质1a1a01a1a0向 x、y 轴正负方向无限延伸函数的定义域为R 图象关于原点和y 轴不对称非奇非偶函数函数图象都在x 轴上方函数的值域为R+函数图象都过定点0,11a0自左向右看,图象逐渐上升自左向右看,图
16、象逐渐下降增函数减函数第一象限内的图象纵坐标都大第一象限内的图象纵坐标都小1a,0 xx1a,0 xx第二象限内的图象纵坐标都小第二象限内的图象纵坐标都大1a,0 xx1a,0 xx象上升趋势是越来越陡 象上升趋势是越来越缓数值开场增长较慢,到了某一长速度极快;数值开场减小极快,到了某一小速度较慢;6.对数的概念:一般地,如果Nax)1,0(aa,那么数x叫做以a为底N的对数,记作:Nxaloga 底数,N 真数,Nalog 对数式说明:1注意底数的限制0a,且1a;2xNNaaxlog;3 注意对数的书写格式两个重要对数:1 常用对数:以10 为底的对数Nlg;2 自然对数:以无理数7182
17、8.2e为底的对数的对数Nln7.对数式与指数式的互化:xNalogNax8.对数的性质 1负数和零没有对数;21 的对数是零:01loga;3底数的对数是1:1log aa;4对数恒等式:NaNalog;5nanalog9.如果0a,且1a,0M,0N,那么:|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 5 页,共 18 页文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4
18、ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文
19、档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1
20、H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T
21、4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D
22、4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2
23、R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M
24、4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4-.-.word.zl.1Ma(log)NMalogNalog;2NMalogMalogNalog;3naMlognMalog)(Rn10.换底公式abbccalogloglog0a,且1a;0c,且1c;0b 1bmnbanamloglog;2abbalog1log11.对数函数的概念1定义:函数0(logaxya,且)1a叫做对数函数。其中x是自变量,函数的定义域是0,+注意:1对数函数的定义与指数函数类似,都是形式定义,注意区分如:xy2log2,5log5xy都不是对数函数
25、,而只能称其为对数型函数对数函数对底数的限制:0(a,且)1a2类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格:图象特征函数性质1a1a01a1a0函数图象都在y 轴右侧函数的定义域为0,图象关于原点和y 轴不对称非奇非偶函数向 y 轴正负方向无限延伸函数的值域为R 函数图象都过定点1,111自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数一象限的图象纵坐标都大于一象限的图象纵坐标都大于0log,1xxa0log,10 xxa二象限的图象纵坐标都小于二象限的图象纵坐标都小于0log,10 xxa0log,1xxa规律:在第一象限内,自左向右,图象对应的对数函数的底数
26、逐渐变大|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 6 页,共 18 页文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X
27、3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:
28、CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 H
29、P6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE
30、7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编
31、码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3
32、 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4-.-.word.zl.12.幂函数:一般地,形如xy)(Ra的函数称为幂函数,其中为常数幂函数性质归纳:1所有的幂函数在0,+都有定义,并
33、且图象都过点1,1;20时,幂函数的图象通过原点,并且在区间),0上是增函数特别地,当1时,幂函数的图象下凸;当10时,幂函数的图象上凸;30时,幂函数的图象在区间),0(上是减函数 在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于时,图象在x轴上方无限地逼近x轴正半轴必修一第三单元1.函数零点的概念:对于函数)(Dxxfy,把使0)(xf成立的实数x叫做函数)(Dxxfy的零点函数零点的意义:|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 7 页,共 18 页文档编码:CV7B1Z2R1H3 HP6C8T4M4T
34、4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D
35、4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2
36、R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M
37、4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I1
38、0D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1
39、Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T
40、4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4-.-.word.zl.函数)(xfy的零点就是方程0)(xf实数根,亦即函数)(xfy的图象与x轴交点的横坐标即:方程0)(xf有实数根函数)(xfy的图象与x轴有交点函数)(xfy有零点2.函数零点的求法:求函数)(xfy的零点:代数法求方程0)(xf的实数根;几何法对于不能用求根公式的方程,可以将它与函数)(x
41、fy的图象联系起来,并利用函数的性质找出零点3.零点存在性定理:如果函数y=f(x)在区间 a,b上的图象是连续不断一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点.即存在 c(a,b),使得 f(c)=0,这个 c 也就是方程f(x)=0 的根.4.二分法及步骤:对于在区间a,b上连续不断,且满足)(af)(bf0的函数)(xfy,通过不断地把函数)(xf的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法给定精度,用二分法求函数)(xf的零点近似值的步骤如下:1确定区间a,b,验证)(af)(bf0,给定精度;2求区间
42、a(,)b的中点1x;3计算)(1xf:1假设)(1xf=0,那么1x就是函数的零点;2 假设)(af)(1xf0,那么令b=1x此时零点),(10 xax;3假设)(1xf)(bf0,那么令a=1x此时零点),(10bxx;4判断是否到达精度;即假设|ba,那么得到零点零点值a或b;否那么重复步骤24必修四第一单元1.任意角的三角函数的意义及其求法:在角上的终边上任取一点(,)P x y,记22rOPxy那么sinyr,cosxr,tanyx.2.三角函数值在各个象限内的符号:正弦:上正下负;余弦:左负右正;正切:一、三正,二、四负|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*
43、|*|*|欢.|迎.|下.|载.第 8 页,共 18 页文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4
44、T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10
45、D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z
46、2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4
47、M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I
48、10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B
49、1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4文档编码:CV7B1Z2R1H3 HP6C8T4M4T4 ZE7X3G6I10D4-.-.word.zl.3.同角三角函数间的关系:1cossin22.sincostan;cotcossin.4.诱导公式1 sin 2sink,cos 2cosk,tan 2tankk2 sinsin,co
50、scos,tantan3 sinsin,coscos,tantan4 sinsin,coscos,tantan口诀:函数名称不变,符号看象限5 sincos2,cossin26 sincos2,cossin2口诀:奇变偶不变,符号看象限5.三角函数的图像与性质:名称sinyxcosyxtanyx定义域xRxR|,2x xkkZ值域 1,1 1,1(,)图象奇偶性奇函数偶函数奇函数单调单调增区间:2,222kk(kZ)单调减区间:单调增区间:2,2kk(kZ)单调减区间:(kZ)2,2kk(kZ)单调增区间:(,)22kk(kZ)|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|