2022年《-整式乘除与因式分解》知识点归纳总结精编版2 .pdf

上传人:Q****o 文档编号:56655083 上传时间:2022-11-02 格式:PDF 页数:7 大小:119.47KB
返回 下载 相关 举报
2022年《-整式乘除与因式分解》知识点归纳总结精编版2 .pdf_第1页
第1页 / 共7页
2022年《-整式乘除与因式分解》知识点归纳总结精编版2 .pdf_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《2022年《-整式乘除与因式分解》知识点归纳总结精编版2 .pdf》由会员分享,可在线阅读,更多相关《2022年《-整式乘除与因式分解》知识点归纳总结精编版2 .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、最新资料推荐-1-整式乘除与因式分解知识点归纳总结一、幂的运算:1、同底数幂的乘法法则:nmnmaaa(nm,都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:532)()()(bababa2、幂的乘方法则:mnnmaa)((nm,都是正整数)幂的乘方,底数不变,指数相乘。如:10253)3(幂的乘方法则可以逆用:即mnnmmnaaa)()(如:23326)4()4(43、积的乘方法则:nnnbaab)((n是正整数)。积的乘方,等于各因数乘方的积。如:(523)2zyx=5101555253532)()()2(zyxzyx4、同底数幂的除法法则:nmnmaaa(

2、nma,0都是正整数,且)nm同底数幂相除,底数不变,指数相减。如:3334)()()(baababab5、零 指 数;10a,即 任 何 不 等 于 零 的 数 的 零 次 方 等 于1。二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。如:xyzyx3232。7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mcmbmacbam)(cbam,都是单项式)。如:)(3)32(2yxyyxx=。8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积

3、相加。最新资料推荐-2-9、平方差公式:22)(bababa注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。如:)(zyxzyx=10、完全平方公式:2222)(bababa完全平方公式的口诀:首平方,尾平方,首尾 2 倍中间放,符号和前一个样。公式的变形使用:(1)abbaabbaba2)(2)(2222;abbaba4)()(22222)()()(bababa;222)()()(bababa(2)三项式的完全平方公式:bcacabcbacba222)(222211、单项式的除法法则:单项式相除

4、,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。如:bamba24249712、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:cbamcmmbmmammcmbmam)(三、因式分解的常用方法1、提公因式法(1)会找多项式中的公因式;公因式的构成一般情况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;(2)提公因式法的步骤:第一步是

5、找出公因式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项(3)注意点:提取公因式后各因式应该是最简形式,即分解到“底”;如果多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 Z

6、F6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10

7、ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10

8、 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T1

9、0 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T

10、10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3

11、T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C

12、3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2最新资料推荐-3-2、公式法运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式:平方差公式:a2b2(ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)23、十字相乘法.(一)二次项系数为1 的二次三项式直接利用公式)()(2qxpxpqxqpx进行分解。特点:(1)二次项系数是 1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

13、思考:十字相乘有什么基本规律?例 1.已知 0a5,且a为整数,若223xxa能用十字相乘法分解因式,求符合条件的a.解析:凡是能十字相乘的二次三项式 ax2+bx+c,都要求24bac0 而且是一个完全平方数。于是98a为完全平方数,1a例 2、分解因式:652xx分析:将 6 分成两个数相乘,且这两个数的和要等于5。由于 6=23=(-2)(-3)=16=(-1)(-6),从中可以发现只有23 的分解适合,即 2+3=5。1 2 解:652xx=32)32(2xx1 3=)3)(2(xx12+13=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系

14、数。例 3、分解因式:672xx解:原式=)6)(1()6()1(2xx1-1=)6)(1(xx1-6(-1)+(-6)=-7 练习 1、分解因式(1)24142xx(2)36152aa(3)542xx文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C

15、3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4

16、C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H

17、4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1

18、H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J

19、1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10

20、J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC1

21、0J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2最新资料推荐-4-(二)二次项系数不为1 的二次三项式cbxax2条件:(1)21aaa1a1c(2)21ccc2a2c(3)1221cacab1221cacab分解结果:cbxax2=)(2211cxacxa例 4、分解因式:101132xx分析:1-2 3-5(-6)+(-5)=-11 解:101132xx=)53)(2(xx练习 3、分解因式:(1)6752xx(2)2732xx(三)二次项系数为1 的齐次多项式例 5、分解因式:221288baba分析:将b

22、看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解。1 8b 1-16b 8b+(-16b)=-8b 解:221288baba=)16(8)16(82bbabba=)16)(8(baba练习 4、分解因式(1)2223yxyx(2)2286nmnm(3)226baba(四)二次项系数不为1 的齐次多项式例 9、22672yxyx例 10、2322xyyx1-2y 把xy看作一个整体1-1 2-3y 1-2(-3y)+(-4y)=-7y(-1)+(-2)=-3 解:原式=)32)(2(yxyx解:原式=)2)(1(xyxy练习 9、分解因式:(1)224715yxyx(2)862

23、2axxa文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5

24、F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D

25、5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6

26、D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF

27、6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 Z

28、F6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10

29、ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2最新资料推荐-5-综合练习 5、(1)17836xx(2)22

30、151112yxyx(3)10)(3)(2yxyx(4)344)(2baba(5)222265xyxyx(6)2634422nmnmnm(7)3424422yxyxyx(8)2222)(10)(23)(5bababa 3、在数学学习过程中,学会利用整体思考问题的数学思想方法和实际运用意识。如:对于任意自然数 n,22)5()7(nn都能被动 24整除。1若225722mnnmbaba的运算结果是753ba,则nm的值是()A-2 B2 C-3 D3 2若a为整数,则aa2一定能被()整除 A 2 B3 C4 D5 3若 x2+2(m-3)x+16是完全平方式,则 m 的值等于()A.3 B.-

31、5 C.7.D.7 或-1 4如图,矩形花园 ABCD 中,AB=a,AD=b,花园中建有一条矩形道路 LMQP 及一条平行四边形道路 RSTK,若LM=RS=c,则花园中可绿化部分的面积为()A2bacabbcBacbcaba2C2cacbcab文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码

32、:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编

33、码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档

34、编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文

35、档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2

36、文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y

37、2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5

38、Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2最新资料推荐-6-Dababcb225分解因式:abba2122_.6下表为杨辉三角系数表的一部分,它的作用是指导读者按规律写出形如nba(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出nba展开式中所缺的系数。32233222332babbaababababababa则4322344_babbabaaba7.3x(7-x)=18-x(3x-15);8.(x+3)(x-7)+8(x+5)(x-1).9.2,3n

39、mxx,求nmx23、nmx23的值文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1

40、H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J

41、1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10

42、J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC1

43、0J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC

44、10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 H

45、C10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2最新资料推荐-7-10探索题:11)

46、(1(2xxx)1)1)(1(32xxxx1)1)(1(423xxxxx1)1)(1(5234xxxxxx试求122222223456的值判断1222222200620072008的值的个位数是几?文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T

47、10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3

48、T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C

49、3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4

50、C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H4C3T10 ZF6D5F7O5Y2文档编码:CF2F7J10X9B9 HC10J1H

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁