《2022年2《离散数学下》试卷A最终稿 .pdf》由会员分享,可在线阅读,更多相关《2022年2《离散数学下》试卷A最终稿 .pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、安徽大学 20 10 20 11 学年第2 学期 离散数学(下)考试试卷(A 卷)(闭卷时间120分钟)考场登记表序号一、单选题(每小题2分,共 20 分)1、设,G为群,其中G是实数集,运算为kbaba,k为G中固定常数,则在群,G中,关于运算的幺元以及元素x的逆元分别为()Ae和x B-e和xk C k和kx2 D k和)2(kx2、设f是,G到,H的群同态,那么下列命题错误的是()A同态f的核是,G的正规子群 B),(Gf的幺元必是,H的幺元C),(Gf的零元可以不是,H的零元 D 同态象),(Gf是,H的子群3、设21:RRf是环同态满射,baf)(,那么下列结论错误的是()A若a是零
2、元,则b是零元 B若a是幺元,则b是幺元C若a不是零因子,则b不是零因子 D 若2R是不交换的,则1R不交换4设 R 为实数集合,20(),0aMRa bR Rb为实数域关于矩阵的乘法运算()A.可交换且有幺元B.可交换且无幺元C.不可交换且有幺元D.不可交换且无幺元5下面哈斯图为分配格的是()A.B.C.D 6在布尔代数1,0,B中任取两元素ba,,下列命题与ab不一定等价的是()题 号一二三四五六七总分得 分阅卷人院/系年级专业姓名学号答题勿超装订线-装-订-线-得 分A.*a ba B.abb C.*0a b D.1ab7布尔代数,*,0,1B上定义的n元布尔表达式所对应的不同主析取范式
3、总个数为()A.2n B.|nBB C.2|nB D.|nB8设 G是连通平面图,G中有 6 个顶点 8 条边,则G的面的数目是()A2 个 B4 个 C3 个 D5 个9下列各图不是哈密尔顿图的为()A.B,C.D 10完全二部图4,5K删去()条边可以得到树。A 4 B10 C5 D12 二、判断题(对的打,错的打,每小题2 分,共 10 分)1在代数系统中,一个元素的逆元不一定是唯一。()2若环R满足左消去律,那么R必定没有右零因子。()3不满足分配率的格(非分配格)同样也满足模不等式。()4无向简单图G的极小支配集必为G的极大独立集。()5任何树(2 个顶点以上)的点连通度和边连通度都
4、是1。()三、填空题(每小空2分,共 20 分)1.设Z是整数集,在Z上定义二元运算为bababa,其中和是数的加法和乘法,则代数系统,*Z的幺元是,零元是。2.设11,.,1,012N,12为模 12 加法,则群1212,N中元素 7 的阶为,元素4确定的子群9,6,3,0H的陪集为。3.布尔代数(,),a b c中,原子为,,a b的补元为。4.设图G的邻接矩阵为001011110M,则G的可达性矩阵为_ _。5.设e为无向完全图4K的一条边,则4eK的连通度为,匹配数为。得 分得 分文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4
5、J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R
6、6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D
7、2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2
8、S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L
9、8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q
10、9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4
11、G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N46.若一棵树有2 个结点度数为2,一个结点度数为3,3 个结点度数为4,其余是叶结点,则该树有 _ _个叶结点。四、解答题(每小题10分,共 30 分)1.给定集合654321,G,其中,3213211,3123212,1233213,2313214,1323215,2133216。G在合成运算下组成的群,G,试求,G的所有正规子群和每个正规子群的陪集。2.设布尔代数
12、1,0,1,0ba上的布尔表达式321321*,xxbxaxxxf,试求其主析取范式和主合取范式。得 分答题勿超装订线-装-订-线-文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5
13、ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文
14、档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4
15、G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W
16、5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N
17、4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4
18、J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N43.求图G(如下图所示)的支配数)(0G、点覆盖数)(0G、边覆盖数)(1G、独立数)(0G、匹配数)(1G、点连通度)(0G、边连
19、通度)(1G、点色数)(0G、边色数)(1G,结果填入下表。并给出图G的邻接矩阵A(结点与自身邻接,结点次序按字母顺序)。)(0G)(0G)(1G)(0G)(1G)(0G)(1G)(0G)(1G五、证明题(每小题10分,共 20 分)1.设3|,Fabi a bQ,其中i为虚数单元,和为常规的复数加法和乘法,试证明,*F是一个域。文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S
20、4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8
21、R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9
22、D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G
23、2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4
24、L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10
25、Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB
26、4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N42.证明若G是每个区域至少由k(3k)条边围成的连通平面图,其中n、m分别是图G的顶点数和边数,则(2)2k nmk。答题勿超装订线-装-订-线-文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5
27、ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文
28、档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4
29、G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W
30、5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N
31、4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4文档编码:CB4G2S4J4G8 HU7W4L8R6W5 ZG5W10Q9D2N4