2022年2019年初中几何知识点总结 .pdf

上传人:Q****o 文档编号:56633582 上传时间:2022-11-02 格式:PDF 页数:8 大小:31.64KB
返回 下载 相关 举报
2022年2019年初中几何知识点总结 .pdf_第1页
第1页 / 共8页
2022年2019年初中几何知识点总结 .pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2022年2019年初中几何知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年2019年初中几何知识点总结 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2019 年初中几何知识点总结初中几何是高中几何的基础,我们应该要掌握好关键的知识点以下是为大家精心整理的初中几何知识点总结,欢迎大家阅读。1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2、三角形的分类3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。7、高线、中线、角平分线的意

2、义和做法8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。9、三角形内角和定理:三角形三个内角的和等于180推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角和推论3三角形的一个外角大于任何一个和它不相邻的内角;三 角形的内角和是外角和的一半10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。11、三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9

3、T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F

4、1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:C

5、M9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 H

6、H9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE

7、3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码

8、:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6

9、 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2(2)三角形的一个外角等于与它不相邻的两个内角和(3)三角形的一个外角大于与它不相邻的任一内角(4)三角形的外角和是360。四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1、两组对边平行的四边形是平行四边形。2、性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3、判定:文档编码:CM9B10W1V3O6 HH

10、9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3

11、F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:

12、CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6

13、HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 Z

14、E3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编

15、码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O

16、6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4、对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1、定义:有一个角是直角的平行四

17、边形叫做矩形2、性质:矩形的四个角都是直角,矩形的对角线相等3、判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码

18、:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6

19、 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1

20、ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档

21、编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3

22、O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R

23、1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R24、对称性:矩形是轴对称图形也是中心对称图形。三、菱形的定义、性质及判定1、定义:

24、有一组邻边相等的平行四边形叫做菱形(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形(4)菱形的面积等于两条对角线长的积的一半2、s 菱=争6(n、6 分别为对角线长)3、判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R

25、2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9

26、B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9

27、T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F

28、1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:C

29、M9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 H

30、H9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE

31、3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R24、对称性:菱形是轴对称图形也是中心对称图形四、正方形定义、性质及判定1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2、性质:(1)正方形四个角都是直角,四条边都相等(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)正方形的一条对角线把正方形分成两个全等的等腰直角三 角形(4)正方形的对角线与边的夹角是45(5)正方形的两条对角线把这个正方形分成四个全等的等腰直文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:

32、CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6

33、HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 Z

34、E3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编

35、码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O

36、6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1

37、 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文

38、档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2角三角形3、判定:(1)先判定一个四边形是矩形,再判定出有一组邻边相等(2)先判定一个四边形是菱形,再判定出有一个角是直角4、对称性:正方形是轴对称图形也是中心对称图形五、梯形的定义、等腰梯形的性质及判定1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形2、等腰梯形的性质:等腰梯形的两腰相等;同

39、一底上的两个角相等;两条对角线相等3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的 两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH

40、9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3

41、F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:

42、CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6

43、HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 Z

44、E3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编

45、码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R24、对称性:等腰梯形是轴对称图形六、三角形的中位线平行于三角形的第三边并等于第三边的一 半;梯形的中位线平行于梯形

46、的两底并等于两底和的一半。七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。八、依次连接任意一个四边形各边中点所得的四边形叫中点四 边形。九、多边形文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2

47、文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1

48、V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B

49、8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4

50、R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10W1V3O6 HH9T2H6B8R1 ZE3F1R2Q4R2文档编码:CM9B10

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁