《多边形及其内角和练习题(校正版)5.pdf》由会员分享,可在线阅读,更多相关《多边形及其内角和练习题(校正版)5.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1/4 11.3 多边形及其内角和一、选择题:1.一个多边形的内角和是720,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形2.一个多边形的内角和比它的外角和的3 倍少 180,这个多边形的边数是()A.5 B.6 C.7 D.8 3.若正 n 边形的一个外角为60,则 n 的值是()A.4 B.5 C.6 D.8 4.下列角度中,不能成为多边形内角和的是()A.600 B.720 C.900 D.10805.若一个多边形的内角和与外角和之和是1800,则此多边形是()A.八边形 B.十边形 C.十二边形 D.十四边形6.下列命题:多边形的外角和小于内角和,三角形的内角和等于
2、外角和,多边形的外角和是指这个多边形所有外角之和,四边形的内角和等于它的外角和.其中正确的有()A.0 个 B.1个 C.2个 D.3个7.一个多边形的边数增加2条,则它的内角和增加()A.180 B.90 C.360 D.5408.过多边形的一个顶点可以作7 条对角线,则此多边形的内角和是外角和的()A.4 倍 B.5倍 C.6倍 D.3倍9.在四边形ABCD中,A、B、C、D的度数之比为2343,则D的外角等于()A.60 B.75 C.90 D.10.在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3 倍,那么这个多边形的边数是()A.4 B.6 C.8 D.10 11.如图,
3、AB CD EF,则下列各式中正确的是()A.123180B.12390C.12390D.23118012.在下列条件中:CBA321:C:B:ABA90CBA中,能确定ABC是直角三角形的条件有().二、填空题1.五边形的内角和等于_度.2.若一凸多边形的内角和等于它的外角和,则它的边数是_.3.正十五边形的每一个内角等于_度.4.十边形的对角线有_条.5.内角和是1620的多边形的边数是_.6.一个多边形的每一个外角都等于36,那么这个多边形的内角和是.7.一个多边形的内角和是外角和的4 倍,则这个多边形是边形.8.已知等腰梯形ABCD 中,AD BC,若 B=31D,则 A的外角是.9题
4、图9.如图在 ABC中,D是 ACB与 ABC的角平分线的交点,BD的延长线交AC于 E,且 EDC=50,则 A的度数为.10.如图,在六边形ABCDEF 中,AFCD,AB DE,且 A=120,B=80,则 C的度数是,D的度数是 10题图三、计算题1.一个多边形的每一个外角都等于45,求这个多边形的内角和.2.一个多边形的每一个内角都等于144,求它的边数.2/4 3.如果四边形有一个角是直角,另外三个角的度数之比为234,那么这三个内角的度数分别是多少?4.一个正多边形的一个内角比相邻外角大36,求这个正多边形的边数.5.已知多边形的内角和等于1440,求(1)这个多边形的边数,(2
5、)过一个顶点有几条对角线,(3)总对角线条数.6.一个多边形的外角和是内角和的72,求这个多边形的边数;7.已知一多边形的每一个内角都相等,它的外角等于内角的32,求这个多边形的边数;8.一多边形内角和为2340,若每一个内角都相等,求每个外角的度数.9.已知四边形ABCD 中,A:B=7:5,A-C=B,C=D-40,求各内角的度数.10.一个多边形,除一个内角外,其余各内角之和等于1000,求这个内角及多边形的边数.文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:C
6、X2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 H
7、A1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY
8、3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码
9、:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8
10、 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8
11、ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档
12、编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T13/4 11.如图,一个六边形的六个内角都是120,AB=1,BC=CD=3,DE=2,求该六边形的周长.四、拓展练习1.探究:(1)如图21与CB有什么关系?为什么?(2)把图ABC沿DE折叠,得到图,填空:12_CB(填“”“”“”),当40A时,CB+21=_.(3)如图,是由图的ABC沿DE折叠得到的,如果30A,则360yx(CB+21)360,从而猜想yx与A的关系为.图 图 图 2.如图 1、图 2、图 3 中,点E、D分
13、别是正ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的一边延长线和另一边反向延长线上的点,且ABE与BCD能互相重合,BD延长线交AE于点F.(1)求图 1 中,AFB的度数;(2)图 2 中,AFB的度数为 _,图 3 中,AFB的度数为 _;3(1)如图 1,有一块直角三角板XYZ 放置在 ABC 上,恰好三角板XYZ 的两条直角边XY、XZ 分别经过点 B、CABC 中,A=30 ,则 ABC+ACB=_,XBC+XCB=_ 图 1 图 2 图 3 EFDBCA文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8
14、 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8
15、ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档
16、编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1
17、L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F
18、8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1
19、文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9
20、Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T14/4(2)如图 2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY、XZ 仍然分别经过B、C,那么 ABX+ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出ABX+ACX 的大小4如图,A、B 两点同时从原点O 出发,点A 以每秒 x 个单位长度沿x 轴的负方向运动,点B 以每秒 y 个单位长度沿y 轴的正方向运动(1)若|x+2y5|+|2xy|
21、=0,试分别求出1秒钟后 A、B 两点的坐标;(2)设 BAO 的邻补角和 ABO 的邻补角的平分线相交于点P,问:点 A、B 在运动的过程中,P的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图,延长BA 至 E,在 ABO 的内部作射线BF 交 x 轴于点 C,若 EAC、FCA、ABC 的平分线相交于点G,过点 G 作 BE 的垂线,垂足为H,试问 AGH 和 BGC 的大小关系如何?请写出你的结论并说明理由文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K
22、7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:C
23、X2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 H
24、A1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY
25、3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码
26、:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8
27、 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1文档编码:CX2N10K9Z1L8 HA1O5R9L9F8 ZY3K7I1C6T1