《2021年高中数学毕业会考函数复习资料.pdf》由会员分享,可在线阅读,更多相关《2021年高中数学毕业会考函数复习资料.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、函数一、函数()yf x及有关性质。1.函数定义:()yf x中,自变量x的取值范围为函数的定义域。当xa时,()yf a叫函数值。所有函数值的集合叫做函数的值域。2.映射的定义::fAB两个允许:两个不允许:3.同一函数:_相同。_相同。值域相同。(可由得)4.函数定义域求法:使函数有意义的条件。整式函数(一次函数、二次函数)定义域为R。分式函数的分母不为0。偶次根式函数,被开放数大于或等于0。(()f x的()0f x)对数函数的底数大于0 且不等于1,真数大于0。有多个限制条件的转化为不等式组求定义域。5.函数的单调性:定义:逆运用:当()yf x在区间 m,n上为增函数时,若()()f
2、xf g x则有:()()()()xg xxng xm当()yf x在区间 m,n上为减函数时,若()()fxf g x则有:()()()()xg xxmg xn常用函数的单调性:.一次函数ykxb,当0k时为增函数;当0k时为减函数。.二次函数2yaxbxc,当0a时在(,2ba为减函数;在,)2ba为增函数。当0a时在(,2ba为增函数;在,)2ba为减函数。与开口方向和对称轴有关。.反比例函数1yx在,00与,上均为减函数;1yx在,00与,上均为增函数。.xya01aa且,当01a时为减函数;当1a时为增函数。.logayx01aa且,01a时,在0,上为减函数;当1a时,在0,上为增
3、函数。6.反函数:求函数()yf x的反函数的方法:|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 1 页,共 9 页(1)先根据原函数的定义域求出其值域(2)由()yfx解出()xy(3)将()xy中的,x y互换,即得反函数1()yfx标明定义域有关性质:(1)原函数()yf x与反函数1()yfx的定义域和值域正好互换,原函数过点,a b,则反函数过点,b a。(2)互为反函数的图象关于yx成轴对称图形。(3)原函数与反函数的单调性相同。7.函数得奇偶性:存在奇偶性得条件时定义域必须关于原点对称,在定义域内,将xx换成后(1)若()()fx
4、fx,则()yf x为偶函数。(2)若()()fxf x,则()yf x为奇函数。有关性质:(1)偶函数得图象关于y轴对称,在对称区间上的单调性相反。(2)奇函数得图象关于原点对称,在对称区间上的单调性相同。8.求函数值域的基本方法(1)利用函数的单调性求值域:若()yf x在,m n上为增函数则其值域为(),()f mf n若()yf x在,m n上为减函数则其值域为(),()f nf m。(2)配方法:二次函数2224()24bacbyaxbxca xaaxR当0a时,有最小值244acba,值域为244acba,;当0a时,有最大值244acba,24,4acba。(3)反表示法:即利用
5、反函数的定义域既为原函数的值域。例如:求2121xxy的值域。(4)换原法:还原注意新元素的范围。例如:求1yxx的值域。(5)判别式法:形如:21112a xb xcyaxbxc类型,可转化为关于x的一元二次方程有解,0求值域。(6)图象法。9.周期性:若函数()yf x对于最小正周期T,使()()f xTf x,则称T为函数()yf x的最小正周期。|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 2 页,共 9 页文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H1
6、0O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2
7、Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L
8、2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8
9、H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3
10、C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG
11、8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6
12、O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J310.对称性:若()()f txf tx则称xt为()yf x的对称轴二、指数函数与对数函数(一)指数1 根式与分数指数幂:nanmapa=1pa运算法则:mnaamnaanmamabmab()nnanna2 指数函数的图象和性质:xya01aa且xya1axya01a3 指数方程:(1)()()()()fxg xaaf xg x(化成底数相等)(2)2()0 xxaman可换元后求解,令x
13、ta(0)t4 指数复合函数的单调性:()u xya(1)01a时,()()u xyau x与的单调性相反(2)1a时,()()u xyau x与的单调性相同(一致)(二)对数函数1 对数式与指数式互化:logbaaNNb;log 1alogaalognaa2 对数的运算法则:loglogaaMNloglogaaMNlognaMlognam对数恒等式:logaNa图象性质定义域值域定 点单调性增函数减函数|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 3 页,共 9 页文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4
14、J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U
15、6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H1
16、0O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2
17、Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L
18、2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8
19、H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3
20、C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3换底公式:logloglgcabbalogmab11logab1logab3 对数函数logayx01aa且的图象和性质logayx1alogayx01a(1)当a与b都大于 1 或都小于 1 时,log0ab(2)当a与b一个大于1 另一个小于1 时,log0ab4 对数方程:()()log()log()()0()0aafxg xf xg
21、 xf xg x四 图象变换,设0,0ab1.平移:()(),()()aayf xyf xayf xyf xa向右平移个单位向左平移个单位2.()(),()()byf xyf xb yf xyf xb向上平移 b个单位向下平移个单位3.对称:()(),()()xyyf xyf x yf xyfx关于 轴对称关于轴对称()()yf xyfx关于原点对称图象性质定义域值域定 点单调性增函数减函数|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 4 页,共 9 页文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:
22、CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 H
23、C6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 Z
24、C5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编
25、码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7
26、 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7
27、 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文
28、档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3函数习题1、关于集合A 到集合 B 的映射,下面的说法错误的是()A A 中的每一个元素在B 中都有象B A 中的两个不同元素在B 中的象必不同C B 中的元素在A 中可以没有原象D 象集 C 不一定等于B 2、已知,x y在映射f下的象是,xy xy,那么象1,2的原象是3、已知21fxx,则2f,1fx4、下列各函数中,表示同一个函数的是()A 01
29、2yxy与B 1xyyx与C 2yxyx与D 22211yxxyx与 5、下列函数中(),()f xg x为同一函数的是()A.4444(),()()f xxg xxB.33(),()f xx g xxC.0()1,()f xg xxD.24(),()22xf xg xxx6、二次函数222yxx的值域是7、已知21fxx,试求1ff的值。8、函 数1,1,4yxxZx且,定 义 域 是,值 域是。9、若23,fxxg xfx,则g x的定义域为10、已知函数21,21,xfxx00 xx则11ff11、fx是二次函数,且23,27,03fff,求fx12、(1)已知3fxx,求2fx;(2)
30、已知223fxx,求fx13、已知22142fxxx,求fx|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 5 页,共 9 页文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8
31、L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O
32、8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U
33、3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:C
34、G8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC
35、6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC
36、5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3x y O x y O x y O o x y O 14、下列各图中,哪一个不可能是函数y
37、fx的图象()的图象是:15、函数1yx16、函数11yxx的值域是17、函数42yxx的定义域是18、函数2yxx的值域为,函数2(11)yxxx的值域为19、函数52yx在(,)内是()A.增函数B.减函数C.奇函数D.偶函数20、函数224yxx的单调区间是21、已知函数22(1)2yxa在,4上是减函数,则实数a的取值范围是22、求证:22fxxx在区间 1,2 上是减函数23、函数1(0)yxx的反函数是24、设2fxax,若112f,则a的值是25、已知22(1)1fxxx,求12()3f的值26、若点(1,2)既在函数yaxb的图象上,又在其反函数的图象上,则a=|精.|品.|可
38、.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 6 页,共 9 页文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:
39、CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 H
40、C6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 Z
41、C5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编
42、码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7
43、 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7
44、 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3指数函数和对数函数习题1、化简1223的值等于2、aaa3、将下列根式化为指数形式:52a531a31a4、计算:10630.2534178223865、已知函数1(
45、)4xf xa的图象恒过定点P,则点 P的坐标是6、比较下列数的大小(1)2333和(2)341122和(3)24177和(4)2.548和7求下列各式中x的范围(1)222x(2)1122x(3)223122x(4)239x(5)21255x8、求下列各函数的定义域(1)112xy(2)212xy(3)31xy9、函数211327xy的定义域是10、求下列函数的值域(1)12xy(2)1122xyx(3)3(1)xyx(4)12xy11、若函数()35xf x(2)x,则1()fx的定义域是12、有以下四个命题,(1)若5log3,15xx则;(2)若251log,52xx则;(3)若5lo
46、g0,5xx则;(4)若15log3,125xx则,其中真命题个数为|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*|欢.|迎.|下.|载.第 7 页,共 9 页文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码
47、:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7
48、HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7
49、ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档
50、编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y7 HC6O8H10O1G7 ZC5U3C2Y4J3文档编码:CG8L2U6L7Y