2021年数学分析练习题.pdf

上传人:Q****o 文档编号:56630099 上传时间:2022-11-02 格式:PDF 页数:15 大小:364.75KB
返回 下载 相关 举报
2021年数学分析练习题.pdf_第1页
第1页 / 共15页
2021年数学分析练习题.pdf_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2021年数学分析练习题.pdf》由会员分享,可在线阅读,更多相关《2021年数学分析练习题.pdf(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学分析选论习题选第十章.多元函数微分学1 试论下列函数在指定点的重极限,累次极限(1)22222)(),(yxyxyxyxf,)0,0(),(00yx;(2),1sin1sin)(),(yxyxyxf)0,0(),(00yx.解(1)注意到0),(lim0yxfy)0(x,0),(lim0yxfx)0(y,故两个累次极限均为0,但是,1)1,1(limnnfn,0)1,1(l i mnnfn所以重极限不存在.(2)注意到0),1(ynf,yyynf1sin),)14(2()(n,故两个累次极限不存在.此外,因为|),(|0yxyxf,所以0),(lim)0,0(),(yxfyx.2 设).0

2、,0(),(,0)0,0(),(,),(2222yxyxyxyxxyyxf证明:0),(lim)0,0(),(yxfyx.证明对,0由于|,|21|21|0),(|22222222yxyxyxyxxyyxf可知当2022yx时,便有|0),(|yxf.故0),(lim)0,0(),(yxfyx.3 设242),(yxyxyxf证明:),(lim)0,0(),(yxfyx不存在.证明注意到242420(,)(0,0),()lim(,)lim(1)1xx yymxmxmf x ymxm,它随m而异,因此),(lim)0,0(),(yxfyx不存在.4 讨论下列函数的连续性(1))0,0(),(,0

3、),0,0(),(,)sin(),(22yxyxyxxyyxf精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 1 页,共 15 页(2))0,0(),(,0),0,0(),(,2),(22yxyxyxxyyxf解(1)注意到22|2yxxy,有|2|sin|2|sin|),(|xyxyxyxyxyyxf因此,)0,0(0),(lim)0,0(),(fyxfyx,即),(yxf在(0,0)处连续.(2)注意到,1)1,1(limnnfn54)1,2(l i mnnfn,故),(yxf在(0,0)处不连续.5 讨论函数0,00,1),(222222)(22yxyxyxeyxfyx

4、x在点)0,0(处的偏导数的存在性.解由定义知:11lim0)0,0()0,(lim)0,0(3003xexfxffxxxx,300(0,)(0,0)0(0,0)limlim00yyyfyffyy.6 试讨论函数0,0,0,),(2222122yxyxeyxfyx在)0,0(处的可微性.解.因为,0lim)0,0()0,(lim)0,0(2/1100 xxxxexxfxff,0lim)0,0(),0(lim)0,0(2/1100yyyyeyyfyff所以,),()0,0(),(22)/(122yxyxefyxfyx,其中0),(222/122)/(1eyxeyxyx,0,,22yx由此知),(

5、yxf在)0,0(处可微.7 设)ln(2vuz,而2yxeu,yxv2.求xz,yz.和dz解.由于2yxexu,22yxyeyu,xxv2,1yv,于是)(222xuevuxvvzxuuzxzyx,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 2 页,共 15 页文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10

6、A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A1

7、0A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A

8、10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10

9、A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q1

10、0A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q

11、10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5

12、Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2文档编码:CR9R6N9P7J10 HS5Q10A10A6X8 ZN8Q9J2X7S2)14(122yxuyevuyvvzyuuzyz.dyyzdxxzdzdxxuevuyx)(222dyuyevuyx)14(122.8 设2)()(yxydydxayx是某可微函数的全微分,求a的值.解 不妨设该可微函数为),(yxfz,则按定义可得2)(yxayxxz,2)(yxyyz,由此知)(|ln)()(2xgyxxyxxgdyyxyz.从而又得)()(2)()(122xg

13、yxyxxgyxyyxxz.联系到上面第一式,有)()(2)(22xgyxyxyxayx或yyxayxyxyxayxxg222)(2)(2)()(,从而2a.9 设),(yxxfz.求22xz,yxz2.解这里z是以x和y为自变量的复合函数,它可写成如下形式),(vufz,xu,yxv.由复合函数求导法则知vfyufxvvfxuufxz1.于是1)1(22222222xvvfxuuvfyxvvufxuufvfyufxxz22222212vfyvufyuf,)1(2vfyufyyxz精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 3 页,共 15 页文档编码:CA4I7M10P

14、7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO

15、9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z

16、4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP

17、3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4

18、E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档

19、编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4

20、I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2112222222yvvfyuuvfyvfyyvvufyuuf.1222322vfyvfyxvufyx10 设在2R上可微函数),(yxf满足xf x+0yf y,试证:在极坐标系里f只是的函数.

21、证 对于复合函数),(yxfuc o srx,sinry,由于sincosyxffru,s i nc o srfrfruryx=xf x+0yf y,因此当0r时,0ru,)sin,cos(rrxrfu与r无关,即在极坐标系里f只是的函数.第十一章.隐函数1 设),(yxzz是由方程yzzxln,求dz.解 方程两边对x求偏导,有xzyzyxzzxz112,因而xzzxz.方程两边对y求偏导,有221yzyzyzyyzzx,因而yxzzyz2.故dyyxzzdxxzzdz2.2 设002222vuxyuvyx,求xvxu,.解方程组两边对x求偏导得到02202xxxxvvuuyuvvux,因此

22、有2224vuyuxvvx,2224vuyvxuux。方程组两边对y求偏导得到02202yyyyvvuuxuvvuy,因此222224,24vuxvyuvvuxuyvuyy.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 4 页,共 15 页文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档

23、编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4

24、I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P

25、7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO

26、9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z

27、4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP

28、3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4

29、E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J23 设),(yxzz由方程333axyzz所确定,试求)(22xyzyxz.解 对原方程两端对x求导,可得xyzyzxz2,从而知3222242222)()2()/()12()(xyzyxxyzzzxyzyzxyzyzyzxyzyxz.4 设),(yxzz由方程zxyz所确定,试求22xz.解 对原方程取对数,得yzzxlnln,并该式两端对x求导,有xzyxzzxzlnln,即xyzzzxzlnln,再对上式两端对x求导,得)1)(ln(ln)(lnln()ln(1222xzyzzxzxzzxyzxy

30、zxz2)1(ln)2ln(lnzxzzz.5 证明:方程0)/,/(xzyyzxF所确定的隐函数),(yxzz满足xyzyzyxzx.证明对方程0)/,/(xzyyzxF两边分别对x和y求偏导数,有0)1()11(221xzxzxFxzyF,.0)11()1(221yzxFyzyzyF分别解得21122)(yFxFFxzFyxzx,21122)(yFxFFyzFyyzy,于是,得到.)()(211212122xyzyFxFFyzFxFxzFyyzyxzx6 试求椭球面1222222czbyax内接最大长方体的体积.解 易知,此内接长方体的六个面必分别平行于坐标平面。设此内接最大长方体在第一象

31、限中的坐标为),(zyx,由对称性可知该长方体的体积为xyz8,从而问题转化为求函数xyzzyxf8),(在条件精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 5 页,共 15 页文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3

32、N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E

33、5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编

34、码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I

35、7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7

36、M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9

37、P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4

38、S9 ZP3N10G4E5J21222222czbyax下 的 最 值 问 题。设 辅 助 函 数 为)1(),(222222czbyaxx y zzyxF,0,0,0zyx,则有,020202222zyxczxyFbyxzFaxyzF1222222czbyax.从中可得出唯一解30ax,30by,30cz。根据几何性质不难推知,该椭球面之内接长方体在第一象限的顶点为)3,3,3(cba时达到最大体积.3383338abccbaV7 求表面积为2a,而体积最大的长方体的体积.解 设长,宽,高分别为zyx,,则问题变为求函数)0,0,0(zyxxyzV的最大值,联系方程为022axzyzxy.设

39、辅助函数为22,axzyzxyxyzzyx,则有22202202202220 xyzyzyzxzxzxyyxxyyzxza解方程组得到6azyx,因而最大体积为663aV.8 求空间曲线ttxsi n,1cosyt,4sin2tz,在点0p(对应于2t)处的切线方程和法平面方程.解将2t代人参数方程,得点0p)22,1,12(,该曲线的切向量为T=()2,1,1()2(),2(),2(zyx,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 6 页,共 15 页文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8

40、 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6

41、B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9

42、 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N1

43、0G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J

44、2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:

45、CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M

46、10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2于是得切线方程为22211112zyx法平面方程为1(1)1(1)2(2)2xyz=0,即.4222yx9 求椭圆面632222zyx在)1,1,1(处的切平面方程与法线方程.解设632),(222zyxzyxF.由于2,4,6xyzFx Fy Fz在全空间上处处连续,在)1,1,1(

47、处,2xF,4yF,6zF于是,得切平面方程为0)1(6)1(4)1(2zyx,即632zyx.法线方程为312111zyx.第十三章.重积分1 设D是由直线,0 x,1y和xy围成,试求dxdyexIyD22的值.解 先对x积分后对y积分10302102231dyeydxexdyIyyy.由分部积分法,知eI3161.2 设D是由矩形区域1|x,20y围成,试求dxdyxyID|2的值.解由于22222,|xyyxxyxyxy则dyxydxdyyxdxdxdyxyIxxD22100210222|t d tdxxdxx4/042/3102310cos3861)2(3232465)831(413

48、8613 设D=02,1,0:),(2222xyxyxyyx,试求dxdyxyID的值.精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 7 页,共 15 页文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编

49、码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I

50、7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7M8 HO9P6B2Z4S9 ZP3N10G4E5J2文档编码:CA4I7M10P7

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁