《2021年广东省东莞市2019届高三第二次调研考试文科数学试题(解析版).pdf》由会员分享,可在线阅读,更多相关《2021年广东省东莞市2019届高三第二次调研考试文科数学试题(解析版).pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、广东省东莞市2019 届高三第二次调研考试文科数学试题一、选择题(本大题共12 小题,共 60.0 分)1.已知集合,则()A.B.C.D.【答案】A【解析】【分析】利用一元二次不等式的解法求得集合A,再利用交集的定义和不等式的性质求解.【详解】集合,.故选 A.【点睛】本题主要考查交集运算和一元二次不等式的解法,解题时要认真审题,注意不等式性质的合理运用.2.已知复数,其中 i 为虚数单位,则A.B.C.D.【答案】C【解析】【分析】直接利用复数的除法运算求得复数z,再根据模的定义即可求得复数的模。【详解】解:即故选:C【点睛】本题考查复数模的求法,是基础的计算题3.有 24 名投资者想到某
2、地投资,他们年龄的茎叶图如图所示,先将他们的年龄从小到大编号为号,再用系统抽样方法抽出6 名投资者,邀请他们到实地进行考察其中年龄不超过55 岁的人数为精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 1 页,共 18 页A.1B.2C.3D.4【答案】B【解析】【分析】求出样本间隔,结合茎叶图求出年龄不超过55 岁的有 8 人,然后进行计算即可【详解】解:样本间隔为,年龄不超过55 岁的有 8 人,则需要抽取人,故选:B【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键4.在矩形中,以,为焦点的双曲线经过,两点,则此双曲线的离心率为()A.B.C.D.
3、【答案】D【解析】【分析】利用双曲线的定义及性质,直接列出关系式求解双曲线的离心率即可【详解】由题可知,所以,即,所以此双曲线的离心率为.故选 D.【点睛】本题考查双曲线的定义及性质的应用,考查了离心率的求法,考查计算能力5.圆锥的轴截面是边长为的正三角形,则圆锥的表面积为()A.B.C.D.【答案】C 精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 2 页,共 18 页文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1
4、U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码
5、:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1
6、U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码
7、:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1
8、U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码
9、:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1
10、U3Z4 ZE6E2H4A9V5【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥的底面半径、母线长,结合圆锥表面积公式,即可求出答案.【详解】圆锥的轴截面是边长为的正三角形,圆锥的底面半径,母线长;表面积故选 C.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥轴截面等知识,属于基础题.6.设函数,若为奇函数,则曲线在点处的切线方程为A.B.C.D.【答案】C【解析】【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的斜率后求解切线方程【详解】解:函数,若为奇函数,可得,所以函数,可得,曲线在点处的切线的斜率为:,曲线在点处的切线方程为:
11、故选:C【点睛】本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力7.如图,在中,是边的中线,是边的中点,若,则=()精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 3 页,共 18 页文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
12、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
13、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
14、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
15、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
16、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
17、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5A.B.C.D.【答案】B【解析】分析:利用向量的共线定理、平行四边形法则即可得出详解:在中,是边上的中线是边的中点故选 B.点睛:本题考查了平面向
18、量的基本定理的应用.在解答此类问题时,熟练掌握向量的共线定理、平行四边形法则是解题的关键8.将函数的图象向右平移个单位后得到函数,则具有性质A.周期为,最大值为1,图象关于直线对称,为奇函数B.周期为,最大值为1,图象关于点对称,为奇函数C.周期为,最大值为1,在上单调递减,为奇函数D.周期为,最大值为1,在上单调递增,为奇函数【答案】D【解析】【分析】精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 4 页,共 18 页文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V
19、5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ
20、9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V
21、5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ
22、9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V
23、5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ
24、9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V
25、5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5直接利用三角函数关系式的平移变换的应用求出结果【详解】解:函数的图象向右平移个单位后得到,函数,则函数的最小正周期为,函数的最大值为1,函数在上单调递增,并且为奇函数故选:D【点睛】本题考查的知识要点:三角函数关系式的恒等变换,函数的图象的平移变换和伸缩变换的应用,属于基础题9.已知一个四棱锥的正主 视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A.B.C.4D.2【答案】A【解析】【分析】根据题意画出图形,结合图形得出平面平面ABCD,点P到AD的距离x最大时,四棱锥的体积最大,由此求出 x 的最大值以及
26、四棱锥的高的最大值【详解】解:如图所示,由题意知,平面平面 ABCD,设点 P到 AD 的距离为x,当 x 最大时,四棱锥的高最大,因为,所以点 P的轨迹为一个椭圆,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 5 页,共 18 页文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
27、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
28、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
29、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
30、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
31、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
32、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5由椭圆的性质得,当时,x 取得最大值,即该四棱锥的高的最大值为故选:A【点睛】本题考查了空间几何体三视图的应
33、用问题,也考查了数形结合思想与转化思想的应用问题,是基础题10.若的面积为,且为钝角,则的度数以及的取值范围为A.,B.,C.,D.,【答案】C【解析】【分析】由已知结合余弦定理及三角形的面积公式可得,可求,进而可求 B,然后由正弦定理可,展开后利用正切函数的性质可求范围【详解】解:由余弦定理可得,由正弦定理可得,故选:C【点睛】本题主要考查了正弦定理,余弦定理,三角形的面积公式的综合应用,属于中档试题精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 6 页,共 18 页文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
34、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
35、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
36、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
37、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
38、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2
39、H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2
40、Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V511.在正方体中,E 是侧面内的动点,且平面,则直线与直线 AB 所成角的正弦值的最小值是A.B.C.D.【答案】B【解析】【分析】以 D 为原点,DA 为 x 轴,DC 为 y 轴,为 z 轴,建立空间直角坐标系利用向量法求出直线与直线 AB 所成角的正弦值的最小值【详解】解:以D 为原点,DA 为 x 轴,DC 为 y 轴,为 z 轴,建立空间直角坐标系,设正方体中棱长为1,设0,1,1,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 7 页
41、,共 18 页文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G
42、2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E
43、2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G
44、2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E
45、2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G
46、2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E
47、2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V50,1,1,1,设平面的法向量y,则,取,得,平面,解得,设直线与直线 AB 所成角为,1,直线与直线 AB 所成角的正弦值的最小值是故选:B【点睛】本题考查线线角的正弦值的最小值的求法,空间中线线、线面、面面间的位置关系等基础知识,函数与方程思想,是中档题12.设函数,则不等式的解集为()A.B.C.D.【答案】D【解析】【分析】由题意可知,
48、为偶函数,再求得在上连续且单调递增,由,转化得,解不等式即可求出解集.【详解】为偶函数,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 8 页,共 18 页文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G
49、2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E
50、2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G2Y4 HQ9X1U1U3Z4 ZE6E2H4A9V5文档编码:CX8F4C3G