《2022年2.3数学归纳法同步练习含答案详解 .pdf》由会员分享,可在线阅读,更多相关《2022年2.3数学归纳法同步练习含答案详解 .pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学试卷2.3 数学归纳法一、选择题(每小题5 分,共 20 分)1一个关于自然数n的命题,如果验证当n1时命题成立,并在假设当nk(k1 且kN*)时命题成立的基础上,证明了当nk2 时命题成立,那么综合上述,对于()A一切正整数命题成立B一切正奇数命题成立C 一切正偶数命题成立D 以上都不对2在数列an 中,an112131412n112n,则ak 1()Aak12k1Bak12k212k4C ak12k2D ak12k112k2 3.设平面内有k条直线,其中任何两条不平行,任何三条不共点,设k条直线的交点个数为f(k),则f(k1)与f(k)的关系是()Af(k1)f(k)k1 Bf(k
2、1)f(k)k1 C f(k1)f(k)kD f(k1)f(k)k2 4.用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”,第二步归纳假设应写成()A假设n2k1(kN*)正确,再推n2k3正确B假设n2k1(kN*)正确,再推n2k1正确C 假设nk(kN*)正 确,再推nk1 正确D 假设nk(k1)正确,再推nk2 正确二、填空题(每小题 5 分,共 10 分)5用数学归纳法证明123n2n4n22时,当nk1 时左端在nk时的左端加上_6利用数学归纳法证明“(n 1)(n2)(nn)2n13(2n 1),nN*”时,从“nk”变到“nk1”时,左边应增乘的因式是_三、解答题(共
3、 70 分)7.(15 分)对于nN*,用数学归纳法证明:1n2(n 1)3(n 2)(n1)2n 116n(n1)(n2)8.(20 分)已知正项数列an 和bn 中,a1a(0a 1),b1 1a.当n2 时,anan 1bn,bnbn11a2n1.(1)证明:对任意nN*,有anbn1;(2)求数列 an 的通项公式9(20 分)数列 an 满足Sn2nan(nN*)数学试卷(1)计算a1,a2,a3,a4,并由此猜想通项公式an;(2)用数学归纳法证明(1)中的猜想10.(15 分)已知点Pn(an,bn)满足an1anbn1,bn 1bn1 4an2(nN*)且点P1的坐标为(1,1
4、)(1)求过点P1,P2的直线l的方程;(2)试用数学归纳法证明:对于nN*,点Pn都在(1)中的直线l上文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文
5、档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5
6、Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9
7、U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P
8、2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7
9、D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1
10、P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2数学试卷2.3 数学归纳法答题纸得分:一、选择题题号1 2 3 4 答案二、填空题5 6三、解答题7.8.文档编码:CY5X3F7D5Z8 HV10U1M1P
11、9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7
12、P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F
13、7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M
14、1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1
15、H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X
16、3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U
17、1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2数学试卷9.10.文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P
18、9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7
19、P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F
20、7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M
21、1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1
22、H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X
23、3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U
24、1M1P9U8 ZI1M4W1H7P2数学试卷2.3 数学归纳法答案一、选择题1.B 解析:本题证的是对n1,3,5,7,命题成立,即命题对一切正奇数成立2.D 解析:a1112,a21121314,an 112131412n112n,ak112131412k112k,所以,ak1ak12k112k 2.3.C解析:当nk1 时,任取其中1 条直线,记为l,则除l外的其他k条直线的交点的个数为f(k),因为已 知任何两条直线不平行,所以直线l必与平面内其他k条直线都相交(有k个交点);又因为已知任何三条直线不过同一点,所以上面的k个交点两两不相同,且与平面内其他的f(k)个交点也两两不相同,从
25、而平面内交点的个数是f(k)kf(k1)4.B 解析:首先要注意n为奇数,其次还要使n2k1 能取到 1.二、填空题5.(k21)(k22)(k 1)2解析:nk时左端为123k2,nk1 时左端为12 3k2(k21)(k22)(k1)2.6.2(2k1)解析:当nk(kN*)时,左式为(k1)(k2)(kk);当nk1 时,左式为(k 11)(k12)(k1k1)(k1k)(k1k1),则左边应增乘的式子是(2k1)(2k2)k12(2k1)三、计算题7.证明:设f(n)1n2(n1)3(n2)(n1)2n1.(1)当n1 时,左边 1,右边 1,等式成立;(2)设当nk时等式成立,即1k
26、2(k1)3(k2)(k1)2k116k(k1)(k2),则当nk 1 时,f(k 1)1(k 1)2(k 1)1 3(k 1)2 (k 1)2 3(k 1)1 2(k1)1f(k)12 3k(k1)16k(k1)(k 2)12(k1)(k11)16(k1)(k2)(k3)由(1)(2)可知当n N*时等式都成立8解:(1)证明:用数学归纳法证明当n1 时,a1b1a(1 a)1,命题成立;假设nk(k1 且kN*)时命题成立,即akbk 1,则当nk1 时,ak1bk1akbk 1bk1(ak1)bk 1(ak1)bk1ak2bk1akbkbk1.当nk 1 时,命题也成立由、可知,anbn
27、1 对nN*恒成立(2)an1anbn 1anbn1an2an(1 an)1an2an1an,1an11anan1an1,文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M
28、4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:C
29、Y5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV
30、10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI
31、1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码
32、:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8
33、HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2数学试卷即1an11an 1.数列 1an 是公差为1 的等差数列,其首项为1a11a,1an1a(n1)1,从而ana1(n1)a.9.解:
34、(1)a11,a232,a374,a4158,由此猜想an2n12n1(nN*)(2)证明:当n1 时,a11,结论成立假设nk(k1,且kN*)时,结论成立,即ak2k12k1,那么nk 1(k1,且kN*)时,ak 1Sk1Sk2(k1)ak12kak2akak1.2ak 12ak,ak 12ak222k12k 122k112k,这表明nk1 时,结论成立an2n12n1(n N*)10.解:(1)由P1的坐标为(1,1)知a11,b1 1.b2b114a1213.a2a1b213.点P2的坐标为(13,13)直线l的方程为2xy1.(2)证 明:当n1 时,2a1b121(1)1 成立假
35、设nk(kN*,k1)时,2akbk1 成立,则当nk 1 时,2ak 1bk12akbk 1bk1bk14ak2(2ak1)bk1 2ak12ak12ak1,当nk 1 时,命题也成立由知,对nN*,都有 2anbn1,即点Pn在直线l上文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8
36、 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8
37、 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文
38、档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5
39、Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9
40、U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2文档编码:CY5X3F7D5Z8 HV10U1M1P9U8 ZI1M4W1H7P2