《2021年线性代数公式大全.pdf》由会员分享,可在线阅读,更多相关《2021年线性代数公式大全.pdf(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、A线性代数基本运算A B B AA BC A B C c A BcA cBc dAcd Ac d A cA dAcA 0 c 0 或A 0。ATTAABTAT BTcATABTc AT。BT ATn n 121C 2 n n 1n2 D a21 A21 a22 A22 a2n A2n转置值不变AT A逆值变A1 1cA cn A,1 2,1,2,A1,2,3,3 阶矩阵B1,2,3A B A BAB11,22,33A B1 1,2 2,3 3精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 1 页,共 28 页A A0 B 0 A BBE i,j c1有关乘法的基本运算Cij
2、ai1b1 j ai 2 b2 j ain bnj线性性质A1A2BA1BA2B,A B1 B2 AB1 AB2cA B c ABA cB结合律AB C A BC ABTBT ATAB Ak AlA BAk lAklABkAklAk Bk 不一定成立!AE A,EA AA kE kA,kE A kA AB E BA E与数的乘法的不同之处ABkAk Bk 不一定成立!无交换律因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如A2 2 A 3E A 3E A E 无消去律(矩阵和矩阵相乘)当AB0时A 0 或B 0 由A 0 和AB 0 B 0 由A 0 时AB AC B C(无左消
3、去律)特别的设A 可逆,则A 有消去律。左消去律:AB AC B C。右消去律:BA CA B C。如果A 列满秩,则A 有左消去律,即 AB 0 B 0 AB AC B C精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 2 页,共 28 页文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:C
4、M1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG
5、1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG
6、4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码
7、:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8
8、HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10
9、ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6文档编码:CM1Z6F3X5J8 HG1J6P2T5F10 ZG4E4F9D1Q6AA
10、1 A*AAA*An 1 iiAAA1*A可逆矩阵的性质i)当A 可逆时,AT也可逆,且AT 1 A1 T 。Ak 也可逆,且Ak 1 A1 k 。数c 0,cA 也可逆,cA1 1 A1。cii)A,B 是两个n 阶可逆矩阵AB 也可逆,且AB1 B 1 A1。推论:设A,B 是两个n 阶矩阵,则AB E BA E命题:初等矩阵都可逆,且E i,j1 E i,j1 1 E i cE ic E i,j c1 E i,jc命题:准对角矩阵A11 0 A 0 0 0 A22 0 0 0 0 0 0 0 0 Akk1 11 可逆每个A 都可逆,记A1 00 0 0 0 0 1 22 0 0 1 kk
11、伴随矩阵的基本性质:AA*A*A 当A 可逆时,A EA A*E 得,(求逆矩阵的伴随矩阵法)且得:A*1 伴随矩阵的其他性质A A1 AA1A11,A*A A1 A0 0 0 0 精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 3 页,共 28 页文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档
12、编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B
13、8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R1
14、0 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5
15、文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W
16、4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7
17、R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5
18、W5A ATAT*A*T,AB*B*A*,Ak *A*k ,A*n 2。n 2 时,A*Aa A*b 关于矩阵右上肩记号:T,k,1,*i)任何两个的次序可交换,如AT *A*T ,A*1 A1*等c d ii)ABTBTAT,AB1 B 1 A1,AB*B*A*线性表示0 1,2,si 1,2,s1,2,s x11 x22 xss 有解1,2,sx有解x x1,xsAx 有解,即可用 A 的列向量组表示AB C r1,r2,rs,A 1,2,n,则r1,r2,rs 1,2,n。1,2,t 1,2,s,则存在矩阵C,使得1,2,t 1,2,sC线性表示关系有传递性当1,2,t 1,2,s r1
19、,r2,rp,则1,2,t r1,r2,rp。但ABk Bk Ak 不一定成立!cA*cn 1 A*,精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 4 页,共 28 页文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文
20、档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4
21、B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R
22、10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W
23、5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2
24、W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D
25、7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5等 价 关 系:如果1,2,s与1,2,t互相可表 示1,2,s1,2,t记
26、作1,2,s 1,2,t。线性相关s 1,单个向量,x 0 相关 0 s 2,1,2 相关对应分量成比例1,2 相关a1 :b1 a2:b2 an:bnA 1,2,n,Ax 0 有非零解A0Ax 0 的方程个数n 未知数个数s证明:设c1,cs,c不全为 0,使得c11 css c 0 则其中c 0,否则c1,cs 不全为 0,c11 css 0,与条件1,s 无关矛盾。于是c1 c 1cs 。c s(表示方式不唯一1 s 相关)若1,t 1,s,并且t s,则1,t 一定线性相关。当1,s 时,表示方式唯一1 s 无关如果1,2,s 无关,而1,2,s,相关,则1,2,s如果1,2,s 无关
27、,则它的每一个部分组都无关如果s n,则1,2,s 一定相关向量个数s=维数n,则1,n 线性相(无)关1 n 0 精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 5 页,共 28 页文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3
28、V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS
29、2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7
30、Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8
31、U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:
32、CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 H
33、Y7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5证明:记A 1,s,B 1,t,则存在s t 矩阵C,使得B
34、AC。Cx 0 有s 个方程,t 个未知数,s t,有非零解,C 0。则BAC 0,即也是Bx 0 的非零解,从而1,t 线性相关。各性质的逆否形式如果1,2,s 无关,则s n。如果1,2,s 有相关的部分组,则它自己一定也相关。如果1 s无关,而1,s,则1,s无关。如果1 t 1 s,1 t 无关,则t s。推论:若两个无关向量组1 s 与1 t 等价,则s t。极大无关组另一种说法:取1,2,s 的一个极大无关组I I 也是1,2,s,的极大无关组I,相关。证明:1,s I I,相关。1,t 1,s1,s,1,t 1,s可用1,s唯一表示1,s,1,ss,1,s,1 s1 s1,s 1
35、,/1,s1,2,s1,2,s,1,s1,2,s无关1,2,ss一个线性无关部分组I,若#I 等于秩1,2,4,6I,I 就一定是极大无关组精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 6 页,共 28 页文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W
36、4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V
37、2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2
38、Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y
39、8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U
40、3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:C
41、S2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W51,t1,s矩阵的秩的简单性质0 r
42、A min m,nr A 0 A 0 A 行满秩:r AmA 列满秩:r Ann 阶矩阵A 满秩:r AnA 满秩A 的行(列)向量组线性无关A 0 A 可逆Ax 0 只有零解,Ax 唯一解。矩阵在运算中秩的变化初等变换保持矩阵的秩r ATr Ac 0 时,r cAr Ar A Br Ar Br AB min r A,r BA 可逆时,r ABr B弱化条件:如果A 列满秩,则ABB证:下面证ABx 0 与Bx 0 同解。是ABx 0 的解AB 0 B 0 是Bx 0 的解B 可逆时,r ABr A若AB 0,则r Ar Bn(A 的列数,B 的行数)1,s1,t 1,s1 s,1 t 1,t
43、 精品w o r d 学习资料 可编辑资料-精心整理-欢迎下载-第 7 页,共 28 页文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1
44、S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W
45、4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V
46、2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2
47、Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y
48、8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U
49、3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5文档编码:CS2Z1S2W4B8 HY7Y8W4D7R10 ZN8U3V2T5W5当1,2 是Ax 的两个解时,1 2 是Ax 0 的解A 列满秩时r ABr BB 行满秩时r ABr Ar ABn r Ar B解的性质1Ax 0 的解的性质。如果1,2,e
50、 是一组解,则它们的任意线性组合c11 c22cee 一定也是解。2Ax 0如果1,2,e 是Ax 的一组解,则Ai iA c11 c22 cee c1 A1 c2 A2 ce Aec1c2ce特别的:如果0 是Ax 的解,则n 维向量也是Ax 的解0 是Ax 0 的解。解的情况判别方程:Ax,即x11 x22 xnn 1,2,nA|A1,2,n,1,2,n A|AA|AnA|An方程个数m:c11 c22 cee 是Ax 0 的解c1 c2 ce 0 c11 c22 cee 也是Ax 的解c1 c2 ce 1 i,Ai 0 A c11 c22 cee 0 有解无解唯一解无穷多解精品w o r