反比例函数教案全章综合.pdf

上传人:Q****o 文档编号:56616941 上传时间:2022-11-02 格式:PDF 页数:14 大小:222.12KB
返回 下载 相关 举报
反比例函数教案全章综合.pdf_第1页
第1页 / 共14页
反比例函数教案全章综合.pdf_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《反比例函数教案全章综合.pdf》由会员分享,可在线阅读,更多相关《反比例函数教案全章综合.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、反比例函数教案课题:1.1 反比例函数教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2.能根据实际问题中的条件确定反比例函数的关系式.3.能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:反比例函数的概念,学生理解时有一定的难度。教学过程:知识回顾:什么是函数?一次函数?正比例函数?一、创设情景探究问题情境 1:当路程一定时,速度与时间成什么关系?(vt

2、s)当一个长方形面积一定时,长与宽成什么关系?说明这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如 xy m(m 为一个定值),则 x 与 y 成反比例。(小学知识)这一情境为后面学习反比例函数概念作铺垫。情境 2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v 的代数式表示t 吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?(3)速度 v 是时间 t 的函数吗?为什么?说明(

3、1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式svt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境 3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽 b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20 万元的无息贷款,该厂的平均年还款额yv(km/h)60 80 90 100 120 t(h)名师归纳总结大肚能容,容学习困难之事,学习有成第 1 页,共 1

4、4 页(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数 m 与 n 的积为 200,m 随 n 的变化而变化.问题:(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,如果两个变量y 与 x 的关系可以表示成ykx(k 为常数,k0)的形式,那么称y 是 x 的反比例函数,其中 x 是自变量,y 是因变量,y 是 x 的函数,k是比例系数.(有的书上写成ykx1的形式.)反比例函数的自变量 x 的

5、取值范围 是所有非零实数(不等于0 的一切实数)(为什么?),但在实际问题中,还要根据具体情况 来进一步确定该反比例函数的自变量的取值范围。说明 这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,进而发现特征为:(1)自变量x 位于分母,且其次数是 1.(2)常量 k0.(3)自变量 x 的取值范围是x0 的一切实数.(4)函数值 y 的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为ykx1(k 为常数,k 0)的形式,并结合旧知验证其正确性

6、.二、例题教学例 1:下列关系式中的y 是 x 的反比例函数吗?如果是,比例系数k 是多少?(1)yx15;(2)y2x1;(3)y3x;(4)y1x3;(5)y21x;(6)yx32;(7)y12x.说明这个例题作了一些变动,引导学生充分讨论,把函数关系式如何化成ykx或ykxb 的形式了解函数关系式的变形,知道函数关系式中比例系数的值连同前面的符号,会与一次函数的关系式进行比较,若对反比例函数的定义理解不深刻,常会认为(2)与(4)也是反比例函数,而(2)式等号右边的分母是x1,不是 x,(2)式 y 与 x 1 成反比例,它不是 y 与 x 的反比例函数.对于(4),等号右边不能化成kx

7、的形式,它只能转化为13xx的形式,此时分子已不是常数,所以(4)不是反比例函数.而(7)中右边分母为2x,看上去和(2)类似,但它可以化成12x,即 k12,所以(7)是反比例函数.通过这个例题使学生进一步认识反比例函数概念的本质,提高辨别的能力.例 2:在函数 y2x1,y2x+1,y x1,y12x中,y 是 x 的反比例函数的有个.说明这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别名师归纳总结大肚能容,容学习困难之事,学习有成第 2 页,共 14 页文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2

8、 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2

9、X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O

10、9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y

11、3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10

12、T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码

13、:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3

14、A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6一些反比例函数的变式,如 ykx1的形式.还有 y2x1 通分为 y2xx,y、x 都是变量,分子不是常量,故不是反比例函数,但变为y12x可说成(y1)与 x 成反比例.例 3:若 y 与 x 成反比例,且 x 3 时,y7,则 y 与 x 的函数关系式为.说明这个例题引导学生观察

15、、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数.如果是,指出比例系数k 的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;2、下列哪些关系式中的y 是 x 的反比例函数?如果是,比例系数是多少?(1)y23 x;(2)y23x;(3)xy 20;(4)xy0;(5)x23y

16、.3、已知函数y(m1)x22m是反比例函数,则m 的值为.第 3 题要引导学生从反比例函数的变式ykx1入手,注意隐含条件k0,求出 m 值.四、课堂小结这节课你学到了什么?还有那些困惑?五、布置作业:书P34A 组教学后记:课题:1.1 反比例函数(2)教学目标:1.会用待定系数法求反比例函数的解析式.2.通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义.3.会通过已知自变量的值求相应的反比例函数的值.运用已知反比例函数的值求相应自变量的值解决一些简单的问题.说明引导学生分析、讨论,列出函数关系式,并检验是否是反比例函数,指出比例系数.名

17、师归纳总结大肚能容,容学习困难之事,学习有成第 3 页,共 14 页文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8

18、S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8

19、M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D

20、3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO

21、6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y

22、10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档

23、编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6重点:用待定系数法求反比例函数的解析式.难点:例 3 要用科学知识,又要用不等式的知识,学生不易理解

24、.教学过程:一.复 习1、反比例函数的定义:判断下列说法是否正确(对”,错”)2、思考:如何确定反比例函数的解析式?(1)已知 y 是 x 的反比例函数,比例系数是3,则函数解析式是_(2)当 m 为何值时,函数是反比例函数,并求出其函数解析式关键是确定比例系数!二.新课1.例 2:已知变量y 与 x 成反比例,且当x=2 时 y=9,写出 y 与 x 之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数xky的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y 是关于 x 的反比例函数,当x=43时,y=

25、2,求这个函数的解析式和自变量的取值范围。3.说一说它们的求法:(1)已知变量y 与 x-5 成反比例,且当 x=2 时 y=9,写出 y 与 x 之间的函数解析式.(2)已知变量y-1 与 x 成反比例,且当x=2 时 y=9,写出 y 与 x 之间的函数解析式.4.例 3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(),通过电流的强度为I(A)。(1)已知一个汽车前灯的电阻为30,通过的电流为0.40A,求 I 关于 R 的函数解析式,并说明比例系数的实际意义。(2)如果接上新灯泡的电阻大于30,那么与原来的相比,汽车前灯的亮度将发生什么变化?在例 3 的教学中可作如下启发:(1)

26、电流、电阻、电压之间有何关系?(2)在电压U 保持不变的前提下,电流强度I 与电阻 R 成哪种函数关系?(3)前灯的亮度取决于哪个变量的大小?如何决定?先让学生尝试练习,后师生一起点评。三.巩固练习:1.当质量一定时,二氧化碳的体积V 与密度 p 成反比例。且V=5m3 时,p=198kgm3(1)求 p与 V 的函数关系式,并指出自变量的取值范围。.)/()(,1200)6(.)5(.)4(.)3(.)2(.)()(,20)1(22的反比例函数是每日铺轨量则铺轨天数计划修建铁路例定时,商和除数成反比当被除数(不为零)一的反比例函数是为常量时,当其体积,高为方形的边长为一个正四棱柱的底面正的反

27、比例函数是为常量时,当,周长为,宽为矩形的长为成正比例与中,圆的面积公式的反比例函数是变量,变量和相邻的两条边长分别为一矩形的面积为dkmxdykmxyVyxbaCCbarsrsxycmycmxcm224mxy名师归纳总结大肚能容,容学习困难之事,学习有成第 4 页,共 14 页文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y

28、3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10

29、T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码

30、:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3

31、A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2

32、 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2

33、X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O

34、9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6(2)求 V=9m3 时,二氧化碳的密度。四.拓展:1.已知 y 与 z 成正比例,z 与 x 成反比例,当 x=-4 时,z=3,y=-4.求:(1)Y 关于 x 的函数解析式;(2)当 z=-1 时,x,y 的值.2.五.交流反思求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例 3 中的RUI由欧姆定律得到。六、布置作业:P4 B 组教学后记:课题:1.2 反比例函数的图像和性质(

35、1)教学目标 1、体会并了解反比例函数的图象的意义2、能列表、描点、连线法画出反比例函数的图象3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质教学重点和难点 本节教学的重点是反比例函数的图象及图象的性质由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点 教学过程 1、情境创设可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数反比例函数的图象研究:反比例函数的图象又会是什么样子呢?2、探索活动之间的函数关系。与,求值都等于的时,与成反比例,并且与成正例,与,已知xyyxxxyxyy

36、yy10322121名师归纳总结大肚能容,容学习困难之事,学习有成第 5 页,共 14 页文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编

37、码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O

38、3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S

39、2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M

40、2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3

41、O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6

42、Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6探索活动 1 反比例函数xy2的图象由于反比例函数xy2的图象是曲线型的,且分

43、成两支 对此,学生第一次接触有一定的难度,因此需要分几个层次来探求:(1)可以先估计例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);(2)方法与步骤利用描点作图;列表:取自变量x 的哪些值?x 是不为零的任何实数,所以不能取x 的值的为零,但仍可以以零为基准,左右均匀,对称地取值。描点:依据什么(数据、方法)找点?连线:怎样连线?可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。探索活动 2 反比例函数xy2的图象可以引导学生采用多种方式进行自主探索活动:(1)可以用画反比例函数xy2的图象的方式与步骤进行自主探索其图象;(2)可以通过探索函数x

44、y2与xy2之间的关系,画出xy2的图象探索活动 3 反比例函数xy2与xy2的图象有什么共同特征?引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征(即 双曲线)反比例函数xky(k 0)的图象中两支曲线都与x 轴、y 轴不相交;并且当0k时,图象在第一、第三象限内,函数值y 随自变量 x 取值的增大而减小:当0k时,图象在第二、第四象限内,函数值y 随自变量x 取值的增大而增大。反比例函数xky(k 0)的图象关于直角坐标系的原点成中心对称。反比例函数xky与xky(k 0)的图象关于直角坐标系的x 轴 成轴对称。3、学生练习课本 P9 作出xy3的图象4、应用

45、知识,体验成功练笔:课本P10 1.2.5、归纳小结,反思提高名师归纳总结大肚能容,容学习困难之事,学习有成第 6 页,共 14 页文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X1

46、0D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9

47、ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S

48、1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6

49、文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:C

50、J4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3M8S2 HP8M2X10D3O9 ZO6Y3S1Y10T6文档编码:CJ4O3A3

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁