《六章节定积分应用.ppt》由会员分享,可在线阅读,更多相关《六章节定积分应用.ppt(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、六章节定积分应用 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望第一第一节节 定积分的元素法定积分的元素法要应用定积分来解决实际问题,就需要解决下面要应用定积分来解决实际问题,就需要解决下面两个问题:两个问题:(1 1)什么样的量能表示为定积分?什么样的量能表示为定积分?(2 2)怎样求出这些量的定积分表达式?怎样求出这些量的定积分表达式?在前面,我们已经看到:在前面,我们已经看到:曲边梯形的面积,曲边梯形的面积,作变速直线运动的物体所走的路程,作变速直线运动的物
2、体所走的路程,都能用定积分都能用定积分来表示。来表示。这些量具有什么特征?这些量具有什么特征?(i i)是非均匀,连续分布在某个区间是非均匀,连续分布在某个区间上的。上的。(ii)(ii)具有对区间的可加性。具有对区间的可加性。即:即:若将区间若将区间分为若干个子区间,分为若干个子区间,那么,那么,分布在区间分布在区间上的总量等于分布在各个子区间上的部分量之和。上的总量等于分布在各个子区间上的部分量之和。一般地,一般地,具有上面这两个特征的量都能用定积分表示。具有上面这两个特征的量都能用定积分表示。这就回答了第一个问题。这就回答了第一个问题。下面,考虑第二个问题。下面,考虑第二个问题。以曲边梯
3、形的面积为例。以曲边梯形的面积为例。abx xy yo o通过任分,任取,求和,取极限四步,通过任分,任取,求和,取极限四步,我们得到我们得到下面,为了方便应用,下面,为了方便应用,我们希望将上面的四步我们希望将上面的四步进行简化。进行简化。a bxyo为了简单起见,我们略去下标,那么,上式变为为了简单起见,我们略去下标,那么,上式变为abxyo那么,那么,表示什么呢?表示什么呢?x xy yo o 在图上表示:在图上表示:小矩形的面积小矩形的面积它是小曲边梯形面积它是小曲边梯形面积的一个近似值。的一个近似值。它有什么特征呢?它有什么特征呢?令令,则,则根据微分的定义,知根据微分的定义,知是是
4、的线性函数,且的线性函数,且这就是这就是这个近似值的特征。这个近似值的特征。因此,因此,要将曲边梯形的面积要将曲边梯形的面积表示为定积分,表示为定积分,关键是:求出关键是:求出的表达式的表达式.一旦求出了一旦求出了的表达式,的表达式,即:即:则有则有这样,就将这样,就将 曲边梯形的面积曲边梯形的面积表示为定积分了。表示为定积分了。面积元素面积元素总结一下:总结一下:将曲边梯形的面积将曲边梯形的面积表示为定积分的步骤可简化为表示为定积分的步骤可简化为下面两步:下面两步:(1 1)将区间将区间任分为若干个小区间,任分为若干个小区间,然后,任取一个小区间然后,任取一个小区间,分布在其上的面积分布在其上的面积(2 2)一般地,一般地,可按下面的步骤将一个量可按下面的步骤将一个量表示为定积分:表示为定积分:(1 1)将区间将区间任分为若干个小区间,任分为若干个小区间,然后,任取一个小区间然后,任取一个小区间,分布在其上的部分量分布在其上的部分量量量U 的元素的元素(2 2)这种将一个量表示为定积分的方法称为这种将一个量表示为定积分的方法称为定积分的元素法定积分的元素法。