2015年天津市高考数学试卷(理科)答案与解析.pdf

上传人:H****o 文档编号:55731943 上传时间:2022-10-31 格式:PDF 页数:18 大小:643.76KB
返回 下载 相关 举报
2015年天津市高考数学试卷(理科)答案与解析.pdf_第1页
第1页 / 共18页
2015年天津市高考数学试卷(理科)答案与解析.pdf_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2015年天津市高考数学试卷(理科)答案与解析.pdf》由会员分享,可在线阅读,更多相关《2015年天津市高考数学试卷(理科)答案与解析.pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 2015 年天津市高考数学试卷理科参考答案与试题解析一.选择题在每题给出的四个选项中,只有一项是符合题目要求的1 5 分 2015?天津已知全集U=1,2,3,4,5,6,7,8,集合 A=2,3,5,6,集合 B=1,3,4,6,7,则集合A?UB=A 2,5 B3,6 C2,5,6 D2,3,5,6,8 考点:交、并、补集的混合运算专题:集合分析:由全集 U 及 B,求出 B 的补集,找出A 与 B 补集的交集即可;解答:解:全集 U=1,2,3,4,5,6,7,8,集合 A=2,3,5,6,集合 B=1,3,4,6,7,?UB=2,5,8,则 A?UB=2,5 故选:A点评:此题考查

2、了交、并、补集的混合运算,熟练掌握运算法则是解此题的关键2 5 分 2015?天津设变量x,y 满足约束条件,则目标函数z=x+6y 的最大值为A3B4C18 D40 考点:简单线性规划专题:不等式的解法及应用分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值解答:解:作出不等式组对应的平面区域如图:阴影部分由 z=x+6y 得 y=x+z,平移直线y=x+z,由图象可知当直线y=x+z 经过点 A 时,直线y=x+z 的截距最大,2 此时 z 最大由,解得,即 A0,3将 A0,3的坐标代入目标函数z=x+6y,得 z=3 6=18即 z=x+6y 的最大值

3、为18故选:C点评:此题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法3 5 分 2015?天津阅读如图的程序框图,运行相应的程序,则输出S的值为A10 B6C14 D18 考点:程序框图专题:图表型;算法和程序框图分析:模拟执行程序框图,依次写出每次循环得到的i,S的值,当 i=8 时满足条件i5,退出循环,输出S的值为 6文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4

4、H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4

5、K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4

6、H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4

7、K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4

8、H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4

9、K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4H7C4T3T4文档编码:CK4Z5H4K2X4 HF7T6M1J2M1 ZP4

10、H7C4T3T43 解答:解:模拟执行程序框图,可得S=20,i=1 i=2,S=18 不满足条件i5,i=4,S=14 不满足条件i5,i=8,S=6 满足条件i5,退出循环,输出S 的值为 6故选:B点评:此题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S 的值是解题的关键,属于基础题4 5 分 2015?天津设x R,则“|x2|1”是“x2+x20”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断专题:简易逻辑分析:根据不等式的性质,结合充分条件和必要条件的定义进行判断即可解答:解:由“|x2|1”得 1x3,由

11、 x2+x20 得 x1 或 x 2,即“|x2|1”是“x2+x20”的充分不必要条件,故选:A点评:此题主要考查充分条件和必要条件的判断,比较基础5 5 分 2015?天津如图,在圆O 中,M、N 是弦 AB 的三等分点,弦CD,CE 分别经过点 M,N,假设 CM=2,MD=4,CN=3,则线段NE 的长为AB3CD考点:与圆有关的比例线段专题:选作题;推理和证明分析:由相交弦定理求出AM,再利用相交弦定理求NE 即可文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码

12、:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2

13、HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 Z

14、Z10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档

15、编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B

16、2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3

17、 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1

18、文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T14 解答:解:由相交弦定理可得CM?MD=AM?MB,2 4=AM?2AM,AM=2,MN=NB=2,又 CN?NE=AN?NB,3 NE=4 2,NE=故选:A点评:此题考查相交弦定理,考查学生的计算能力,比较基础6 5 分 2015?天津 已知双曲线=1 a0,b0的一条渐近线过点2,且双曲线的一个焦点在抛物线y2=4x 的准线上,则双曲线的方程为A=1 B=1 C=1 D=1 考点:双曲线的标准方程专题:计算题;圆锥曲线的定义

19、、性质与方程分析:由抛物线标准方程易得其准线方程,从而可得双曲线的左焦点,再根据焦点在x轴上的双曲线的渐近线方程渐近线方程,得a、b 的另一个方程,求出a、b,即可得到双曲线的标准方程解答:解:由题意,=,抛物线 y2=4x 的准线方程为x=,双曲线的一个焦点在抛物线y2=4x 的准线上,c=,a2+b2=c2=7,a=2,b=,双曲线的方程为故选:D点评:此题主要考查双曲线和抛物线的标准方程与几何性质,考查学生的计算能力,属于基础题文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T

20、1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5

21、N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S

22、2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H

23、2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3

24、Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B

25、8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y

26、7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T15 7 5 分 2015?天津已知定义在R 上的函数fx=2|xm|1m 为实数为偶函数,记 a=flog3,b=flog25,c=f2m,则 a,b,c 的大小关系为Aabc Bacb Cc ab Dcb a 考点:函数单调性的性质专题:函数的性质及应用分析:根据 f x为偶函数便可求出m=0,从而 f x=2|x|1,这样便知道f x在0,+上单调递增,根据fx为偶函数,便可将自变量的值变到区间0,+上:a=f|log

27、3|,b=flog25,c=f0,然后再比较自变量的值,根据f x在0,+上的单调性即可比较出a,b,c 的大小解答:解:fx为偶函数;f x=fx;2|xm|1=2|xm|1;|xm|=|xm|;xm2=x m2;mx=0;m=0;fx=2|x|1;fx在 0,+上单调递增,并且a=f|log3|=flog23,b=flog25,c=f 0;0log23log25;cab故选:C点评:考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间0,+上,根据单调性去比较函数值大小对数的换底公式的应用,对数函数的单调性,函数单调性定义的运用8 5 分 2015?天

28、津 已知函数fx=,函数 gx=bf2x,其中 b R,假设函数y=f x gx恰有 4 个零点,则b 的取值范围是A,+B,C0,D,2考点:根的存在性及根的个数判断专题:创新题型;函数的性质及应用分析:求出函数y=f x gx的表达式,构造函数hx=f x+f 2x,作出函数 hx的图象,利用数形结合进行求解即可解答:解:g x=bf2x,y=fx gx=f x b+f2x,文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q

29、3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T

30、1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5

31、N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S

32、2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H

33、2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3

34、Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B

35、8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T16 由 fx b+f2x=0,得 fx+f2x=b,设 hx=f x+f2x,假设 x 0,则 x 0,2x 2,则 hx=f x+f2x=2+x+x2,假设 0 x 2,则 2 x 0,0 2x 2,则 hx=f x+f2x=2x+2|2x|=2x+22+x=2,假设 x2,x0,2x 0,则 hx=f x+f2x=x22+2|2x|=x25x+8即 hx=,作出函数hx的图象如图:当 x 0 时,hx=2+x+x2=x+2+,当 x2 时,hx=x25x+8=x2+,故当

36、b=时,hx=b,有两个交点,当 b=2 时,hx=b,有无数个交点,由图象知要使函数y=f x gx恰有 4 个零点,即 hx=b 恰有 4 个根,则满足b 2,故选:D点评:此题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决此题的关键二.填空题每题5 分,共 30 分9 5 分 2015?天津 i 是虚数单位,假设复数1 2i a+i是纯虚数,则实数a 的值为2考复数的基本概念文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N

37、9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2

38、Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2

39、T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z

40、5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8

41、S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7

42、H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S

43、3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T17 点:专题:数系的扩充和复数分析:由复数代数形式的乘除运算化简,再由实部等于0 且虚部不等于0 求得 a 的值解答:解:由 12i a+i=a+2+12ai 为纯虚数,得,解得:a=2故答案为:2点评:此题考查了复数代数形式的乘法运算,考查了复数为纯虚数的条件,是基础题10 5 分 2015?天津一个几何体的三视图如下图单位:m,则该几何体的体积为m3考点:由三视图求面积、体积专题:计算题;空间位置关系与距离分析:根据几何体的三视图,得出该几何体是

44、圆柱与两个圆锥的组合体,结合图中数据求出它的体积解答:解:根据几何体的三视图,得;该几何体是底面相同的圆柱与两个圆锥的组合体,且圆柱底面圆的半径为1,高为 2,圆锥底面圆的半径为1,高为 1;该几何体的体积为V几何体=2?12 1+?12?2=故答案为:点评:此题考查了利用空间几何体的三视图求体积的应用问题,是基础题目文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2

45、HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 Z

46、Z10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档

47、编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B

48、2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3

49、 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1

50、文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N9B2 HK7I4B8S2Q3 ZZ10H7Y7H2T1文档编码:CI1S3Z5N

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁