《2016年极坐标与参数方程高考题的几种常见题型答案.pdf》由会员分享,可在线阅读,更多相关《2016年极坐标与参数方程高考题的几种常见题型答案.pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 1 页 共 9 页极坐标与参数方程高考题的几种常见题型1、O1和 O2的极坐标方程分别为cos4,sin4(I)把 O1和 O2的极坐标方程化为直角坐标方程;(II)求经过 O1,O2交点的直线的直角坐标方程解:(I)cosx,siny,由cos4得cos42所以xyx422即0422xyx为 O1的直角坐标方程同理0422yyx为 O2的直角坐标方程(II)解:由04042222yyxxyx,两式相减得4x-4y=0,即过交点的直线的直角坐标方程为y=x2、以直角坐标系的原点为极点,轴非负半轴为极轴,在两种坐标系中取相同单位的长度.已知直线的方程为,曲线的参数方程为,点是曲线上的一动点.
2、求线段的中点的轨迹方程;()求曲线上的点到直线的距离的最小值.解析 设中点的坐标为,依据中点公式有为参数,这是点轨迹的参数方程,消参得点的直角坐标方程为.5 分直线的普通方程为,曲线的普通方程为,表示以为圆心,以2 为半径的圆,故所求最小值为圆心到直线的距离减去半径,设所求最小距离为d,则.因此曲线上的点到直线的距离的最小值为.3、在极坐标系下,已知圆sincos:O和直线:l22)4sin(。(1)求圆O和直线l的直角坐标方程;当),0(时,求直线l于圆O公共点的极坐标。解:1圆sincos:O,即sincos2第 2 页 共 9 页圆O的直角坐标方程为:yxyx22,即022yxyx直 线
3、:l22)4sin(,即1cossin则 直 线 的 直 角 坐 标 方 程 为:1xy,即01yx。(2)由01022yxyxyx得10yx故直线l与圆O公共点的一个极坐标为)2,1(。4、在直角坐标系xOy 中,以 O为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos3=1,M,N分别为 C与 x 轴,y 轴的交点。1写出 C的直角坐标方程,并求M,N的极坐标;2设 MN 的中点为P,求直线OP的极坐标方程。解:由得1)3cos(1)sin23cos21(C直角方程为)2,332(3322)0,2(202312321NMyxyx,所以时,所以时,即 M点的直角坐标为 2,0
4、 N点的直角坐标为)332,0(P点的直角坐标为),6,332(),33.1(点的极坐标为则P直线 OP极坐标方程为),(,5、在直角坐标系中,曲线的参数方程为为参数,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为1求曲线的普通方程与曲线的直角坐标方程;2设为曲线上的动点,求点到上点的距离的最小值,并求此时点的坐标.解析 1由曲线:得两式两边平方相加得:即曲线的普通方程为:由曲线:得:所以即曲线的直角坐标方程为:(2)由 1知椭圆与直线无公共点,椭圆上的点到直线文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1
5、Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5
6、文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1
7、Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5
8、文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1
9、Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5
10、文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1
11、Y3I6K9N7 ZU6R7H8Z8Q5文档编码:CU4H7I2C5V8 HP1Y3I6K9N7 ZU6R7H8Z8Q5第 3 页 共 9 页的距离为所以当时,的最小值为,此时点的坐标为6、在平面直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线 l 的参数方程为:(为参数),两曲线相交于,两点.写曲线直角坐标方程和直线普通方程;假设,求的值 解析()(曲线的直角坐标方程为,直线的普通方程.4 分()直线的参数方程为(为参数),代入,得到,对应的参数分别为,,则7、已知直线的参数方程为:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线
12、的参数方程;当时,求直线与曲线交点的极坐标.解析 由,可得文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L
13、10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R
14、8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5
15、R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T
16、5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V
17、2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4
18、P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8第 4 页 共 9 页所以曲线的直角坐标方程为,标准方程为,曲线的极坐标方程化为参数方程为5 分当时,直线的方程为,化成普通方程为,由,解得或,所以直线与曲线交点的极坐标分别为,;,.8、已知在直角坐标系中
19、,直线的参数方程为,为参数,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为 求直线的普通方程和曲线的直角坐标方程;设点是曲线上的一个动点,求它到直线的距离的取值范围.解析 直线的普通方程为,C直角坐标方程为.设点,则,所以的取值范围是.(10分9、选修 44:坐标系与参数方程在直角坐标系xOy中,圆 C的参数方程为参数以 O为极点,x 轴的非负半轴为极轴建立极坐标系求圆C的极坐标方程;直线的极坐标方程是,射文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编
20、码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1
21、 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3
22、 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文
23、档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4
24、J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10
25、Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M
26、8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8第 5 页 共 9 页线与圆 C的交点为O、P,与直线的交点为Q,求线段PQ的长10、理已知曲线 C的极坐标方程是以极点为平面直角坐标系的原点,极轴为 x 轴的正半轴,建立平面直角坐标系,直线的参数方程是(t是参数)(I)将曲线 C的极坐标方程和直线的参数方程分别化为直角坐标方程和普通方程;()假设直 线与曲线 C相交于 A,B两点,且,试求实数m的值11、在平面直角坐标系中,曲线的参数方程是为参数将的文档编码:CZ4P5R1R4
27、J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10
28、Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M
29、8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1
30、R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L
31、10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R
32、8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5
33、R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8第 6 页 共 9 页方程化为普通方程;以为极点,轴的正半轴为极轴建立极坐标系.设曲线的极坐标方程是,求曲线与交点的极坐标.解析 依题意,的普通方程为,由题意,的普通方程为,代入圆的普通方程后得,解得,点、的直角坐标为,从而,.7 分12、已知曲线(t为参数),(为参数)化,的方程为普通方程
34、,并说明它们分别表示什么曲线;过曲线的左顶点且倾斜角为的直线交曲绒于 A,B两点,求.解析 解曲线为圆心是,半径是 1 的圆.曲线为中心是坐标原点,焦点在x 轴上,长轴长是8,短轴长是6的椭圆.4 分 曲线的左顶点为,则直线的参数方程为为参数将其代入曲线整理可得:,设对应参数分别为,则所以.10 分13、在直角坐标系中,曲线 C的参数方程为为参数.以原点为极点,轴的正半轴为极轴建立极坐标系,点,直线的极坐标方程为.判断点与直线的位置关系,说明理由;文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2
35、D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:
36、CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 H
37、O4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 Z
38、W2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编
39、码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1
40、 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3
41、 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8第 7 页 共 9 页()设直线与直线的两个交点为、,求的值.解析 直线即,:,点在 上.()直线的参数方程为 为参数,曲线 C的直角坐标方程为,将直线的参数方程代入曲线C的直角坐标方程,有,设两根为,.10 分14、在直角坐标系中,以原点O为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线C参数方程为为参数,直线的极坐标方程为.写出曲线C的普通方程和直线的直角坐标方程;求曲线C上的
42、点到直线的最大距离,并求出这个点的坐标.解析 由得,则直线的普通方程为.由得曲线的普通方程为.5 分 在上任取一点,则点到直线的距离为,当,即时,此时点.10 分)15.、河南省商丘市2014 届高三第三次模拟考试数学理试题在极坐标系中,已知圆C的圆心(2,)4C,半径 r=3 I 求圆 C的极坐标方程;文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5
43、L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2
44、R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P
45、5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4
46、T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9
47、V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ
48、4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4J4T5L10Y3 ZW2D9V2R8M8文档编码:CZ4P5R1R4J1 HO4
49、J4T5L10Y3 ZW2D9V2R8M8第 8 页 共 9 页假设0,4,直线l的参数方程为2cos2sinxtytt 为参数,直线l交圆C于 A、B两点,求弦长|AB|的取值范围解:C直角坐标(1,1),所以圆C的直角坐标方程为22(1)(1)3xy,2 分由cossinxy得,圆 C的直角坐标方程为22cos2sin105 分将2cos2sinxtyt,代入C的直角坐标方程22(1)(1)3xy,得22(cossin)10tt,则0,设,对应参数分别为1t,2t,则122(cossin)tt,1 21t t,212121 2|()48 4sin2ABtttttt因为0,)4,所以sin2
50、0,1)所以84sin28,12),所以|AB的取值范围为2 2,2 3)16、昆明第一中学2014 届高三第五次月考以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为tytx213235(t为参数),圆 C 的极坐标方程为)3cos(4。I 求直线l和圆 C的直角坐标方程;假设点Px,y在圆 C上,求yx3的取值范围17、2011 年高考新课标理 直角坐标系xOy中,曲线1C的参数方程为2cos2 2sinxy(为参数),M是1C上的动点,P点满足OP=2OM,P点的轨迹为2C.()求2C的方文档编码:CZ4P5R1R4J1