第25章-解直角三角形知识点总结及练习题.docx

上传人:叶*** 文档编号:55474103 上传时间:2022-10-30 格式:DOCX 页数:5 大小:108.58KB
返回 下载 相关 举报
第25章-解直角三角形知识点总结及练习题.docx_第1页
第1页 / 共5页
第25章-解直角三角形知识点总结及练习题.docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《第25章-解直角三角形知识点总结及练习题.docx》由会员分享,可在线阅读,更多相关《第25章-解直角三角形知识点总结及练习题.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第25章 解直角三角形知识点复习和练习题考点一、直角三角形的性质 1、直角三角形的两个锐角互余可表示如下:C=90A+B=902、在直角三角形中,30角所对的直角边等于斜边的一半。 A=30可表示如下: BC=AB C=903、直角三角形斜边上的中线等于斜边的一半 ACB=90 可表示如下: CD=AB=BD=AD D为AB的中点4、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项如图:已知 ACB=90 CDAB 则有 6、常用关系式由三角形面积公式可得:AB

2、CD=ACBC考点二、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。考点三、锐角三角函数的概念 1、如图,在ABC中,C=90 锐角A的对边及斜边的比叫做A的正弦,记为sinA,即锐角A的邻边及斜边的比叫做A的余弦,记为cosA,即锐角A的对边及邻边的比叫做A的正切,记为tanA,即锐角A的邻边及对边的比叫做A的余切,记为cotA,即2、锐角三角函数的概念锐角A的正弦、余弦、正切、余切都叫做A的锐角三角函数3、一些特殊角的三角函数

3、值三角函数 0 30 45 60 90sin01cos10tan01不存在cot不存在104、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90A) , cosA=sin(90A) , tanA=cot(90A) ,cotA=tan(90A)(2)平方关系:(3)倒数关系:tanAtan(90A)=1(4)弦切关系:tanA=5、锐角三角函数的增减性当角度在090之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)考

4、点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。2、解直角三角形的理论依据在RtABC中,C=90,A,B,C所对的边分别为a,b,c(1)三边之间的关系:(勾股定理)(2)锐角之间的关系:A+B=90(3)边角之间的关系:考点五、解直角三角形的实际运用在进行测量时,从下向上看,视线及水平线的夹角叫做仰角,从上向下看,视线及水平线的夹角叫俯角。如图所示如图所示坡面的铅直高度()和水平长度()的比叫做坡面的坡度(或坡比),记作,即,通常写成1:m的形式坡面及水平面的夹角

5、叫做坡角,记作,有BCA例1如图,在RtABC中,则下列结论正确的是( )AB C D解题思路:运用直角三角形的边角关系,选D例2在RtABC中,已知C=90,sinB=,则cosA的值是 ( ) A B C D解题思路:运用直角三角形的边角关系,例1选D,例2选C例3计算:解题思路: ,原式=例4:如图,已知AC=1,求BD。 解题思路:将未知线段设为,通过列方程来解直角三角形是常用的有效方法。设BD=x,根据图形有AC=CD=1 BD+CD=AC 例5:如图,已知中,B=45,C=30,BC=3+,求AB的长。解题思路:解直角三角形中,需将已知角置于直角三角形中,故“构造直角三角形”是常见

6、的作辅助线的方法,简单说就是“作高”。解:作ADBC于D AD=BD 设BD=AD= 在中, 即【实弹射击】一、选择题。1、RtABC中,C90,AB6,AC2,则sinA( )A、 B、 C、 D、2、在ABC中,C=90,a, b, c分别为A,B,C的对边,下列各式错误的是( ) A、a=csinA Bb=ccosB Cb=atanBDa=btanA3、若0acosa B、cosasina C、tana1 D、tana4、如果为锐角,那么sin+cos的值( )A.小于1 B.等于1 C.大于1 D.不能确定范围 5、若A为锐角,cosA=,则有( ) A、0A30 B、30A45 C、

7、 45A60 D 60A”或“”连结: cos18 cos183;tan31 tan32; sin39 cos514、在一艘船上看海岸上高42米的灯塔顶部的仰角为30度,船离海岸线 米.5、若A是锐角,且sinA=cosA,则A的度数是_度6、等腰三角形的两边分别为6和8,则底角的正切为7、菱形中较长的对角线及边长之比为,那么菱形的两邻角分别是8、等腰三角形底边长10cm,周长为36cm,则一底角的正切值为9、在ABC中,ACB90,CDAB于D,若AC4,BD6,则sinA .10、某人沿着坡度i=1:的山坡走了50米,则他离地面 米高。三、解答题 1、计算:(1)sin60 cos45si

8、n30cos30(2)2、ABC中,C90.(1)已知:c 8,A60,求B、a、b(2) 已知:a3, A30,求B、b、c.3、如图,在菱形ABCD中,AEBC 于E点,EC=1,sinB=.求四边形ABCD的周长。4、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)5、经过江汉平原的沪蓉(上海成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得. (1)求所测之处江的宽度(); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图中画出图形.ACB图图5、去年某省将地处A、B两地的两所大学合并成一所综合大学,为了方便A、B两地师生的交往,学校准备在相距2千米的A、B两地之间修筑一条笔直公路如图中线段AB,经测量,在A地北偏东方向、B地西偏北方向的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?第 5 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁