《产品设计CAE有限元分析基础概述优秀PPT.ppt》由会员分享,可在线阅读,更多相关《产品设计CAE有限元分析基础概述优秀PPT.ppt(39页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、产品设计产品设计2主讲人:曾富洪攀枝花学院攀枝花学院2第九章第九章 产品设计中的计算机帮助工程(产品设计中的计算机帮助工程(CAE)技术)技术 计算机帮助工程(Computer Aided Engineering,CAE)主要以有限元分析技术为基础,综合了快速发展中的计算力学、计算数学、相关的工程管理学与现代计算技术而形成的一门综合性、学问密集型的学科。其相关的软件称为CAE软件。CAE软件能够对特定产品进行性能分析、预料和优化,也可以对通用产品进行物理、力学性能分析、模拟、预料、评价和优化,以实现产品的技术创新。计算机帮助工程CAE39.1.1 有限元法的发展历史有限元法的发展历史 第一次正
2、式运用“有限单元”(Finite Element)这一术语并提出这种离散系统分析方法的是美国加州高校伯克利分校的R.W.Clough教授(1960)。在有限单元技术的发展中Zien-Kiewicz教授被誉为解决难题的能手,和他齐名的美国J.T.odne教授、R.L.Taylor教授以及卡学磺教授等都是从工程界出身的,这也正好说明有限元法是工程和数学相结合的产物。1963-1964年,经过J.F.Besseling,R.J.Melosh,R.E.Jones,R.H.Gallaher等多人的工作,相识到有限元就是变分原理中Ritz近似法的一种变形,发展了用各种不同变分原理导出的有限元计算公式。从而
3、使Ritz分析的全部理论基础都适用于有限元法,确认了有限元法是处理连续介质问题的一种普遍方法。发展历史发展历史49.1.1 有限元法的发展历史有限元法的发展历史时间应用范围理论基础研究对象通用有限元法程序前后处理1950年Turner、Clough等的论文构筑了有关的有限元法1960年宇宙和航空由Zienkiewicz开发各种单元使用了“有限元法”、虚功原理、最小势能原理线性问题、静力分析1967年宇宙、航空、土木、造船、机械、水利瑞利里兹法加权残数法非线性问题、动力分析1971年热传导、流体力学、电磁场变分法非线性接触碰撞,断裂力学耦合问题ASK、MSC、Nastran、MARC、ANSYS
4、、SAP NISA II等1980年石油、核工程形状优化、逆问题平面和复杂空间问题MSC.Patran、MSC.Dytran、MSC/XL、ADINA、PAM-CRASH、COSMOS/M等1990年航空航天各种新的解算方法和各种高度非线性材料的本构模型冲击、振动和疲劳问题MSC.Fatigue、ANSYS、MSC.Nastran、SAP5等2000年后机电、随机有限元研究拓扑优化、计算机图形学固体、流体力学以及生物力学制造、加工仿真。ANSYS、ADINA、ABAQUS、MARC、Nastran等59.1.2 有限元法的基本概念有限元法的基本概念 有限元分析(FEA,Finite Eleme
5、nt Analysis)是用较简洁的问题代替困难问题后再求解。它将求解域看成是由很多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简洁的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。有限元是那些集合在一起能够表示实际连续域的离散单元。有限元分析69.1.2 有限元法的基本概念有限元法的基本概念1)有限元求解问题的基本步骤有限元求解问题的基本步骤(1)问题及求解域定义:依据实际问题近似确定求解域的物理性质和几何区域。(2)求解域离散化:将求解域近似为具有不同有限大小和形态且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。79.1.2 有限
6、元法的基本概念有限元法的基本概念1)有限元求解问题的基本步骤有限元求解问题的基本步骤 选择位移模式。在有限元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以在有限元法中位移法应用范围最广。当接受位移法时,物体或结构物离散化之后,就可把单元中的一些物理量如位移、应变和应力等由节点位移来表示。这时可以对单元中位移的分析接受一些能靠近原函数的近似函数予以描述。是与坐标有关的某种函数 ai 是待定系数(3)单元特性分析(单元体的形态,节点数目和节点类型,节点参数类型、形函数)89.
7、1.2 有限元法的基本概念有限元法的基本概念1)有限元求解问题的基本步骤有限元求解问题的基本步骤 分析单元的力学性质。依据单元的材料性质、形态、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时须要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限 元法的基本步骤之一。计算等效节点力。物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边界传递到另一个单元中去的,因而,这种作用在单元边界上的表面力、体积力或集中力都须要等效地移到节点上去,也就是用等效的节点力来替代全
8、部作用在单元上的力。99.1.2 有限元法的基本概念有限元法的基本概念1)有限元求解问题的基本步骤有限元求解问题的基本步骤(4)单元组集 利用结构力的平衡条件和边界条件把各个单元按原来的物体结构重新联接起来,组装成整体的有限元方程。K是整体刚度矩阵,Ke为单元刚度矩阵;U是节点位移列阵;f是载荷列阵,Pe、Fe分别表示作用在单元上的体力和面力所产生的等效节点力。(5)求解未知节点位移109.1.2 有限元法的基本概念有限元法的基本概念2)有限元求解实例有限元求解实例12ii+1i+2nn+1L1LiLi+1LnL1234(a)离散前(b)n个有限段离散(c)3个有限段离散119.1.2 有限元
9、法的基本概念有限元法的基本概念2)有限元求解实例有限元求解实例(1)离散化。如图9.1(b)所示,将直杆划分成n个有限段,有限段之间通过一个铰接点连接。两段之间的铰接点称为结点,每个有限段称为单元。其中,第i个单元的长度为Li,包含第i,i+1个结点 式中,ui为第i结点的位移,xi为第i结点的坐标。129.1.2 有限元法的基本概念有限元法的基本概念2)有限元求解实例有限元求解实例(2)用单元节点位移表示单元内部力学关系第i个单元中的位移用所包含的结点位移来表示,如式所示:139.1.2 有限元法的基本概念有限元法的基本概念2)有限元求解实例有限元求解实例(3)把外载荷集中到节点上。把第i单
10、元和第i+1单元重量的一半集中到第i+1结点上 (4)建立结点的力平衡方程。对于第i+1结点,由力的平衡方程可得式:149.1.2 有限元法的基本概念有限元法的基本概念2)有限元求解实例有限元求解实例(5)将直杆划分成3个等长的单元,用有限元法进行求解。定义单元的长度a=L/3.对于节点2,1=1,对于节点3,2=1 对于节点1,u1=0159.1.2 有限元法的基本概念有限元法的基本概念2)有限元求解实例有限元求解实例对于结点4可以有两种处理方法。干脆用第3个单元的内力与结点4上的载荷建立平衡方程 假定存在一个虚拟结点5,与结点4构成了虚拟单元4;L4=0,u5=u4,3=L3/L4,可得:
11、U1=0代入后整理16解得:9.1.2 有限元法的基本概念有限元法的基本概念179.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法 结构静力分析是用来分析由于静态外载荷引起的系统或部件的位移、应力和应变。静力分析很适合于求解惯性及阻尼的时间相关作用对结构响应的影响并不显著的问题。其位移的矩阵形式 应变的矩阵形式 应力的矩阵形式 概念概念9.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法(1)基本方程 平衡方程199.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力
12、学问题的有限元法(1)基本方程 平衡方程q为体积力矩阵 力平衡9.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法 几何方程物体受力后变形,其内部的应变和位移的关系称为几何方程。9.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法 物理方程弹性力学中应力应变之间的关系称为物理方程,或称为本构方程。229.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法 物理方程239.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问
13、题的有限元法 边界条件 弹性体 的全部边界为,其中在一部分边界上作用已知的外力,如面力、集中力等,这部分边界称为力的边界;另一部分边界上弹性体的位移为已知,这部分边界称为位移边界u 力的边界位移边界n方向余弦矩阵已知位移矩阵249.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法 虚功原理虚功原理在力学中是一个普遍的原理。虚功原理的定义为:设一弹性体在虚位移发生之前处于平衡状态,当弹性体产生约束许可的微小虚位移并同时在弹性体内产生虚应变时,体力与面力在虚位移上所作的虚功等于整个弹性体内各点的应力在虚应变上所作的虚功的总和,即外力虚功等于内力虚功
14、259.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法(2)结构静力学问题有限元法的求解过程结构静力学问题有限元法的求解过程 连续体的离散化选择合适的等参数单元对连续体进行网格划分。单元分析依据弹性力学或热学或电磁学等的基本方程和变分原理建立单元节点力和节点位移之间的关系。(a)形函数 形函数代表一种单元上近似解的插值关系,它确定近似解在单元上的形态形函数是一种数学函数,规定了从节点的自由度(DOF)值到单元内全部点处的DOF值得计算方法,单元的形函数是给定单元的一种假定特性269.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题
15、的有限元法结构静力学问题的有限元法(2)结构静力学问题有限元法的求解过程结构静力学问题有限元法的求解过程 依据形函数,可以导出以节点位移为基本变量来表示的单元内任一点位移的关系式,其矩阵形式如:为单元内任一点的位移矩阵;为单元的节点位移矩阵。N为单元形函数矩阵,可依据单元类型及节点数来选择确定;279.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法(2)结构静力学问题有限元法的求解过程结构静力学问题有限元法的求解过程(b)单元特性分析、分别为单元内任一点的应变矩阵、应力矩阵,节点力矩阵 B 为单元几何矩阵,表示应变与节点位移的关系 S为单元应力
16、矩阵,表示应力与节点位移的关系,Ke为单元刚度矩阵 为单元节点位移矩阵 289.1.3 有限元法的基本理论有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法、(3)整体分析依据节点力的平衡条件建立有限元方程,引入边界条件,解线性方程已计算单元应力。具体说来可以分为下面三个步骤。分析整理各单元刚度矩阵,通过节点的平衡方程形成节点载荷列阵,合成总刚度矩阵,建立以节点位移为未知量的,以总体刚度矩阵为系数的线性代数方程组,此即为结构静力学问题的有限元限制方程。K为总刚度矩阵 F为总载荷向量 节点位移列阵 对线性代数方程组进行边界处理,求解节点位移。299.1.3 有限元法的基本理论
17、有限元法的基本理论1)结构静力学问题的有限元法结构静力学问题的有限元法、(3)整体分析进一步求得单元应力。309.1.3 有限元法的基本理论有限元法的基本理论、2)结构动力学问题的有限元法结构动力学问题的有限元法 结构动力学分析是用来确定惯性(质量效应)和阻尼起重要作用时结构或构件动力学特性的技术。其动力学特性有振动特性(结构振动方式和振动频率)、随机载荷的效应。M为结构质量矩阵 C为结构阻尼矩阵 K为结构刚度矩阵 F为随时间变更的节点载荷向量 为节点位移矩阵 为节点速度矢量矩阵 为节点加速度矩阵 319.1.3 有限元法的基本理论有限元法的基本理论、2)结构动力学问题的有限元法结构动力学问题
18、的有限元法分析类型 模态分析。设定F(t)为零,而矩阵C通常被忽视。谐响应分析。设定F(t)和u(t)都为谐函数。瞬间动态分析。即为上述限制方程。模态叠加法可按自然频率和模态将完全耦合的通用限制方程转化为一组独立的非耦合方程。模态叠加法可以用来处理瞬态动力学分析和谐响应分析。干脆积分法是通过显示积分或隐式积分法干脆求解通用限制方程。分析方法 329.1.3 有限元法的基本理论有限元法的基本理论、3)热分析问题的有限元法)热分析问题的有限元法 热分析用于计算一个系统或部件的温度分布及其他热物理参数,热分析的类型主要有:稳态热分析系统的温度场不随时间变更;瞬态传热系统的温度场随时间明显变更。式中,
19、Q为热量;W为做功;U为系统内能;KE为系统动能;PE为系统势能。对于大多数工程传热问题,KE=PE=0;通常考虑没有做功,即W=0,则Q=U。对于稳态热分析,即Q=U=0,即流入系统的热量等于流出的热量.339.1.3 有限元法的基本理论有限元法的基本理论、3)热分析问题的有限元法)热分析问题的有限元法(2)热传递的类型热传导 热传导为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循傅里叶定律 式中,q为热流密度(W/m2);K为导热系数(W/(m.0C)349.1.3 有限元法的基本理论有限元法的基本理论3)热分析问题的有限元法)热分析问题的有限元法
20、 热对流热对流是指固体的表面与它四周接触的流体之间,由于温差的存在引起的热量的交换。热对流有两类:自然对流和强制对流。热对流用牛顿冷却方程来描述如下所示:式中,h为对流换热系数;TS为固体表面的温度;TB为四周流体的温度359.1.3 有限元法的基本理论有限元法的基本理论3)热分析问题的有限元法)热分析问题的有限元法 热辐射 热辐射指物体放射电磁能,并被其他物体吸取转变为热的热交换过程。物体温度越高,单位时间辐射的热量越多。热辐射传递可以用斯蒂芬-波尔兹曼方程来计算。式中,q为热流率;为辐射率(黑度),为斯蒂芬-波尔兹曼常数,A1为辐射面1的面积,F12为辐射面1到辐射面2的形态系数;T1辐射
21、面1的确定温度;T2辐射面2的确定温度。369.1.3 有限元法的基本理论有限元法的基本理论3)热分析问题的有限元法)热分析问题的有限元法(3)限制方程 稳态传热 在稳态热分析中任一节点的温度不随时间变更。依据能量守恒原理,稳态热分析的限制方程为:式中,K为传导矩阵,包含导热系数、对流系数及辐射率和形态系数;T为节点温度向量;Q为节点热流率向量,包含热生成。379.1.3 有限元法的基本理论有限元法的基本理论3)热分析问题的有限元法)热分析问题的有限元法(3)限制方程 瞬态传热 在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变更。依据能量守恒原理,瞬态热分析的限制方程为:
22、式中,K为传导矩阵,包含导热系数、对流系数及辐射率和形态系数;C为比热容矩阵,考虑系统内能的增加;T为节点温度向量;Q为节点热流率向量,包含热生成。389.1.3 有限元法的基本理论有限元法的基本理论3)热分析问题的有限元法)热分析问题的有限元法 (4)边界条件、初始条件 热分析的边界条件或初始条件一般有:温度、热流率、热流密度、对流、辐射、绝热、生热。在实际CAE分析工作中,通常将CAE的基本理论融入CAE软件中实现。39小结小结1 1有限元法的发展历史有限元法的发展历史有限元法的发展历史有限元法的发展历史3 3有限元法的基本理论有限元法的基本理论有限元法的基本理论有限元法的基本理论4 4结构静力学问题的有限元法结构静力学问题的有限元法结构静力学问题的有限元法结构静力学问题的有限元法2 2有限元法的基本概念有限元法的基本概念有限元法的基本概念有限元法的基本概念5 5结构动力学问题的有限元法结构动力学问题的有限元法结构动力学问题的有限元法结构动力学问题的有限元法6 6热分析问题的有限元法热分析问题的有限元法热分析问题的有限元法热分析问题的有限元法