《2019_2020年高考数学小题综合训练3.pdf》由会员分享,可在线阅读,更多相关《2019_2020年高考数学小题综合训练3.pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.专业技术资料2019-2020年高考数学小题综合训练3 1已知Uy|ylog2x,x1,Py y1x,x2,则?UP等于()A.12,B.0,12C(0,)D(,0)12,答案A 解析由集合U中的函数ylog2x,x1,解得y0,所以全集U(0,),同样P0,12,得到?UP12,.2“a0”是“函数f(x)x3ax在区间(0,)上是增函数”的()A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件答案B 解析当a0 时,f(x)3x2a0 在区间(0,)上恒成立,即f(x)在(0,)上是增函数,充分性成立;当f(x)在区间(0,)上是增函数时,f(x)3x2a0在(0,)上恒成
2、立,即a 0,必要性不成立,故“a0”是“函数f(x)x3ax在区间(0,)上是增函数”的充分不必要条件第 1 页,共 12 页.专业技术资料3已知函数f(x)sin x,0 x 1,log2 010 x,x1,若a,b,c互不相等,且f(a)f(b)f(c),则abc的取值范围是()A(1,2 010)B(1,2 011)C(2,2 011)D2,2 011 答案C 解析因为a,b,c互不相等,不妨设abc,则 0ab1c,由f(a)f(b)知,a,b关于直线x12对称,所以ab1.由 0log2 010c1,知 1c2 010,所以 2abcn,执行循环体,a4,s16,k2;不满足条件k
3、n,执行循环体,a4,s52,k3;不满足条件kn,执行循环体,a4,s160,k4;不满足条件kn,执行循环体,a4,s484,k5.由题意,此时应该满足条件kn,退出循环,输出s的值为 484,可得 5n 4,所以输入n的值为 4.8(2x1)11x6的展开式中的常数项是()A 5 B7 C 11 D13 答案C 解析11x6的展开式的通项公式是Ck61xk,其中含1x的项是C161x1,常数项为C061x01,故(2x1)11x6的展开式中的常数项是2x C161x1 1 1 121 11.第 5 页,共 12 页文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J
4、4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3
5、HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J
6、4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3
7、HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J
8、4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3
9、HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J
10、4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2.专业技术资料9把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点棱锥体积最大时,直线BD和平面ABC所成角的大小为()A 90 B 60 C 45 D 30 答案C 解析如图,当DO平面ABC时,三棱锥DABC的体积最大 DBO为直线BD和平面ABC所成的角,在 Rt DOB中,ODOB,直线BD和平面ABC所成角的大小为45.10在区间 1,1上任取两数s和t,则关于x的方程x22sxt0 的两根都是正数的概率为(
11、)A.124B.112C.14D.13答案B 解析由题意可得,1s 1,1t 1,其区域是边长为2 的正方形,面积为 4,由二次方程x22sxt 0 有两正根,可得4s24t 0,2s0,t0,第 6 页,共 12 页文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ
12、8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S
13、9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ
14、8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S
15、9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ
16、8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S
17、9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2.专业技术资料即s2t,s0,其区域如图阴影部分所示,面积S?01s2ds13s30 113,所求概率P134112.11椭圆x2y2b21(
18、0b1)的左焦点为F,上顶点为A,右顶点为B,若FAB的外接圆圆心P(m,n)在直线yx的左下方,则该椭圆离心率的取值范围为()A.22,1B.12,1C.0,22D.0,12答案A 解析方法一如图所示,右顶点B(1,0),上顶点A(0,b),左焦点F(1b2,0),线段FB的垂直平分线为x11b22.线段AB的中点坐标为12,b2.kABb,第 7 页,共 12 页文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V
19、1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G
20、3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V
21、1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G
22、3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V
23、1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G
24、3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V
25、1J4N2.专业技术资料 线段AB的垂直平分线的斜率k1b,线段AB的垂直平分线方程为yb21bx12,把x11b22m,代入上述方程,可得yb21b22bn.由P(m,n)在直线yx的左下方,可得mn0,11b22b21b22b0,化简得b1b2,又 0b1,解得 0b22.ecac1b222,1,椭圆离心率的取值范围为22,1.方法二设A(0,b),B(a,0),F(c,0),设FAB的外接圆的方程为x2y2DxEyF0,将A,B,F代入外接圆方程,解得mca2,nb2ac2b.由P(m,n)在直线yx的左下方,可知mn0,ca2b2ac2b0,整理得 1cbcb0,bcbcb0,第 8
26、页,共 12 页文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9
27、Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8
28、L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9
29、Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8
30、L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9
31、Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8
32、L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2.专业技术资料bcb2,即c2a2c2,2c2a2,2e21,由 0e1,解得22e1,椭圆离心率的取值范围为22,1.12已知正数x,y,z满足x2y2z21,则S1z2xyz的最小值为()A3 B.33 12C4 D2(21)答案C 解析由题意可得0z1,01 z0,2xy 8 0,xm,则实数m的取值范围是_ 答案(1,)解析由题意作出
33、其平面区域,由y 3x,yx4,解得A(1,3)故m 1.第 10 页,共 12 页文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 H
34、R6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4
35、N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 H
36、R6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4
37、N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 H
38、R6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4
39、N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2.专业技术资料15已知 ABC的内角A,B,C的对边分别为a,b,c,若 cos B14,b4,sin A2sin C,则ABC的面积为 _ 答案15 解析根据余弦定理的推论cos Ba2c2b22ac,可得14a2c2422ac,化简得 2a2 2c232 ac.(*)又由
40、正弦定理asin Acsin C,可得acsin Asin C21,即a2c,代入(*)式得2(2c)22c232 2cc,化简得c24,所以c2,则a4,又B(0,),则 sin B1cos2B154,SABC12acsin B12 4 215415,即ABC的面积为15.16已知双曲线x2a2y2b2 1(a0,b0)上一点C,过双曲线中心的直线交双曲线于A,B两点,记直线AC,BC的斜率分别为k1,k2,当2k1k2ln|k1|ln|k2|最小时,双曲线的离心率为第 11 页,共 12 页文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8
41、S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 Z
42、Z8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8
43、S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 Z
44、Z8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8
45、S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 Z
46、Z8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8
47、S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2.专业技术资料_ 答案3 解析设A(x1,y1),C(x2,y2),由题意知,点A,B为过原点的直线与双曲线x2a2y2b21 的交点,由双曲线的对称性,得A,B关于原点对称,B(x1,y1),k1k2y2y1x2x1y2y1x2x1y22y21x22x21,点A,C都在双曲线上,x21a2y21b21,x22a2y22b21,两式相减,可得k1k2b2a20,对于2k1k2ln|k1|ln|k2|2k1k2ln|k1k2|,设函数y2xln x,x0,由
48、y2x21x0,得x2,当x2 时,y 0,当 0 x2 时,y 0 取得最小值,当2k1k2ln(k1k2)最小时,k1k2b2a22,e1b2a23.第 12 页,共 12 页文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8
49、S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 Z
50、Z8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8S9Y2G3 HR6J3O5P2G1 ZZ8L2V1J4N2文档编码:CQ3G8