《人教版九年级数学下册27章相似----教案.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册27章相似----教案.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第 二 十 七 章 相 似 教 案总 第11课时执教人(备课人): 虞福中 课题:27.1图形的相似一、教学目标1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形?生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形?(稍停)它们叫
2、相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章).(二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义?生:(让几名同学回答) (师出示下面的板书) 形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读
3、两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说?生:(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面及胶片上的图形是相似图形;实际的建筑物及它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形?(1) (2) (3) (4) (5) (6)2.如图,图中
4、是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(四)尝试指导,讲授新课 (师出示下图)师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系?生:A=A,B=B,C=C.(生答师板书:A=A,B=B,C=C)师:(指图)这两个相似三角形的边有什么关系?(让生思考一会儿)师:(指准图)AB及AB的比是(板书:),BC及BC的比是(板书:),CA及CA的比是(板书:),这三个比相等吗?生:(齐答)相等.师:为什么相等?(稍停后指准图)ABC可以看成是ABC缩小得到的,假如AB是AB的2倍,那么可以想象,BC也是BC的2倍,CA也是CA的2
5、倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子. (师出示下图)师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系?生:A=A,B=B,C=C,D=D.(生答师板书:A=A,B=B,C=C,D=D)师:(指图)这两个相似四边形的边有什么关系?生:=.(生答师板书:=)师:(指式子)这四个比为什么相等?(稍停后指准图)四边形ABCD可以看成是四边形ABCD放大得到的,假如AB是AB的一半,那么可以想象,BC也是BC的一半,CD也是CD的一半,DA也是DA的一半,所以这四个比相等.师:从这两个例子,大家想一想,你能得
6、出一个什么结论?(等到有一部分同学举手再叫学生)生:(多让几名学生发表看法) (师出示下面的板书) 相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说?生:(让几名学生说) (师出示下面的板书) 对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢?(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相
7、等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义. (师出示下面的板书) 对应角相等,对应边的比也相等的两个多边形叫做相似多边形.师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,见课本p5412T(六)归纳小结,布置作业师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形?形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形. (作业:P35练习1.P
8、38习题1.4.)。总 第12课时执教人(备课人): 虞福中 课题:27.1图形的相似一、教学目标1.会运用相似多边形的概念进行计算和证明,知道相似比的意义.2.培养推理论证能力,发展空间观念.二、教学重点和难点1.重点:运用相似多边形的概念进行计算和证明.2.难点:运用相似多边形的概念进行证明.三、教学过程(一)基本训练,巩固旧知1.填空: (1) 相同的两个图形叫做相似图形. (2)相似多边形对应 相等,对应 的比也相等;反过来,对应 相等,对应 的比也相等的多边形是相似多边形.(二)创设情境,导入新课师:上节课我们学习了相似图形的概念,还通过观察图形得出了相似多边形的两个结论. (师出示
9、下面板书) 相似多边形的对应角相等,对应边的比也相等; 对应角相等,对应边的比也相等的多边形是相似多边形.师:本节课我们将利用这两个结论来做两个题目,先请看例1.(三)尝试指导,讲授新课 (师出示例1)例1 如图,四边形ABCD和EFGH相似,求角、的大小和EH的长度x. (先让生尝试,然后师边讲解边板书,解题过程如课本第37页所示)(四)试探练习,回授调节2.填空:如图所示的两个五边形相似,则a= ,b= ,c= ,d= .(五)尝试指导,讲授新课 (师出示例2)例2 如图,证明ABC和ABC相似. (先让生尝试,然后师分析证明思路,最后边讲解边板书,证明过程如下) 证明:在等腰直角ABC和
10、ABC中, A=A=45,B=B=45,C=C=90. 而AB=, AB=, ABC及ABC相似.(六)试探练习,回授调节3.如图,证明ABC及ABC相似.(七)归纳小结,布置作业师:在课的最后,我们还要介绍一个概念.(指准例1图)我们知道,这两个四边形相似,它们对应边的比相等,那么对应边的比等于多少?(稍停)等于(板书:),约分后等于(边讲边板书:=).叫什么?叫相似比.一般来说,相似多边形对应边的比叫做相似比(板书:相似多边形对应边的比叫做相似比).师:好了,两个例题一个概念,这些就是本节课所学的内容. (作业:P38习题3.5.)四、板书设计相似多边形对应角相 例1 例2对应角相等,对应
11、边叫做相似比.总 第13课时执教人(备课人): 虞福中 课题:27.2.1相似三角形的判定一、教学目标1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力2会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题二、重点、难点1重点:相似三角形的定义及三角形相似的预备定理2难点:三角形相似的预备定理的应用三、课堂引入1复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形在ABC及ABC中,如果A=A, B=B, C=C, 且 我们就说ABC及ABC相似,记作ABCABC,k就是它们的相似比反之如果AB
12、CABC,则有A=A, B=B, C=C, 且 (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材P40的探究1 让学生动手做一做,并思考总结平行线分线段成比例定理。3教材P41的思考,并引导学生探索及证明(图2)DEOBCABCDE(图1)4【归纳】三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形及原三角形相似四、例题讲解例1如图 已知DEBC,DFAC,请尽可能多的找出图中的相似三角形,并说明理由。ABCDFEABCDFEG例2(补充)如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长 分析:由DEBC,可得ADE
13、ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长解:略()五、课堂练习如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 (CD= 10)六、作业1如图,ABCAED, 其中DEBC,写出对应边的比例式2如图,ABCAED,其中ADE=B,写出对应边的比例式3如图,DEBC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长总 第14课时执教人(备课人): 虞福中 课题:27.2.1相似三角形的判定一、教学目标1.经历观察、类比、猜想过程,得出相似三角形的三个判定定理,会简
14、单运用这三个定理.2.培养合情推理能力,发展空间观念.二、教学重点和难点1.重点:相似三角形的三个判定定理.2.难点:得出相似三角形的三个判定定理.三、教学过程(一)基本训练,巩固旧知1.填空: 全等三角形的四个判定定理: (1)如果两个三角形三 对应相等,那么这两个三角形全等(简写成:边边边或SSS). (2)如果两个三角形两 对应相等,并且相应的夹角相等,那么这两个三角形全等(简写成:边角边或 ). (3)如果两个三角形两 对应相等,并且相应的夹边相等,那么这两个三角形全等(简写成:角边角或 ). (4)如果两个三角形两 对应相等,并且其中一个角的对边对应相等,那么这两个三角形全等(简写成
15、:角角边或 ). (本课时教学时间比较紧张,建议把本题提前留作作业)(二)创设情境,导入新课师:对两个三角形来说,相似就是形状相同,更明确的定义-对应角相等,对应边的比也相等的两个三角形叫做相似三角形. (师出示下图)师:(指准板书)相似三角形的这个定义,可以用来判定两个三角形相似,但利用定义判定,既要证明三组对应角相等,又要证明三组对应边的比相等,所以比较麻烦.怎么解决这个问题呢?(稍停)(三)尝试指导,讲授新课师:学习三角形全等时,我们知道,除了可以利用全等三角形定义来判定两个三角形全等,还有四个简便的判定方法.哪四个简便的判定方法?(稍停)就是SSS、SAS、ASA、AAS.同样,判定两
16、个三角形相似,有没有简便的判定方法?请大家先自己想一想. (生思考,要给学生充足的思考时间)师:好了,下面我们一起来考虑这个问题.师:全等三角形判定定理SSS是怎么说的?(稍停)如果两个三角形三边对应相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理. (师出示下面的板书) 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果,那么ABCABC(边讲边作如下板书).ABCABC师:这是相似三角形的一个判定定理,下面我们
17、来看第二个判定定理.师:全等三角形判定定理SAS是怎么说的?(稍停)如果两个三角形两边对应相等,并且相应的夹角相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理. (师出示下面的板书) 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如要两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果,夹角A=A,那么ABCABC(边讲边作如下板书). ,A=AABCABC师:这是相似三角形的又一个判定定理,下面我们来看第三个判定定理.师:全
18、等三角形判定定理ASA、AAS都有两个角对应相等的条件,对相似三角形来说,具备两个角对应相等的条件,有这样一个判定定理. (师出示下面的板书)如果两个三角形的两个角对应相等,那么这两个三角形相似.师:(指板书)如要两个三角形的两个角对应相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果A=A,B=B,那么ABCABC(边讲边作如下板书). A=A,B=BABCABC师:(指板书)这就是相似三角形的三个判定定理,之所以称它们为定理,是因为它们都是可以证明的.证明的过程比较复杂,有兴趣的同学可以看课本,课堂上我们就不证明了,只要求大家能够理解这三个判定定理,并能运用它们.下面
19、我们就来运用判定定理. (师出示例题)例 根据下列条件,判断ABC及ABC是否相似,并说明理由: (1)A=120,AB=7,AC=14, A=120,AB=3,AC=6; (2)AB=4,BC=6,AC=8, AB=12,BC=18,AC=21; (3)A=70,B=60, A=70,C=50. (先让生尝试,然后师边讲解边板书,(1)(2)题解题过程如课本第44页所示,(3)题解题过程如下) (3)C=180-A-B=180-70-60=50. A=A=70, C=C=50, ABCABC.(四)试探练习,回授调节2.根据下列条件,判断ABC及ABC是否相似. (1)B=100,C=30,
20、 A=50,B=100; (2)A=40,AB=8,AC=15, A=40,AB=16,AC=20; (3)AB=4,BC=2,CA=3, AB=6,BC=3,CA=4.5.(五)归纳小结,布置作业师:(指板书)本节课我们学习了相似三角形的三个判定定理,希望大家能够理解这三个定理,并记住它们. (作业:P54习题2) 四、板书设计图 如果 例如果A=A, 那么 ABCABC 就说ABC和ABC相似 如果记作ABCABC 那么 ABCABC 如果 那么 ABCABC总 第15课时执教人(备课人): 虞福中 课题:27.2.1相似三角形的判定一、教学目标1.会利用判定定理证明简单图形中的两个三角形
21、相似,进而得出边角关系.2.培养推理论证能力,发展空间观念.二、教学重点和难点1.重点:利用判定定理证明简单图形中的两个三角形相似.2.难点:找相似三角形的对应边.三、教学过程(一)基本训练,巩固旧知1.填空: (1)如果两个三角形的三组对应边的 相等,那么这两个三角形相似. (2)如果两个三角形的两组对应边的 相等,并且相应的 相等,那么这两个三角形相似. (3)如果两个三角形的两个 对应相等,那么这两个三角形相似.2.判断图中的两个三角形是否相似:(1) ABC及DEF ; (2) OAB及ODC ; (3) ABC及ADE .(二)创设情境,导入新课 (出示下面的板书) 如果两个三角形的
22、三组对应边的比相等,那么这两个三角形相似. 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似. 如果两个三角形的两个角对应相等,那么这两个三角形相似.师:(指板书)上节课我们学习了相似三角形的三个判定定理,请大家一起把这三个定理读一遍.(生读)师:本节课我们要学习什么?本节课我们要利用相似三角形的判定定理做几个题目,请看例题.(三)尝试指导,讲授新课 (师出示例题)例 已知:如图,ABDC. 求证:(1)AOBCOD; (2)OAOD=OBOC. (先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:ABDC, A=C,B=D. AOBCO
23、D. OAOD=OBOC. (列时,要让学生自己找OA,OB的对应边,并告诉找对应边的方法)(四)试探练习,回授调节3.已知:如图,DEBC, 求证:(1)ABCADE; (2)ABAE=ACAD.4.完成下面的证明过程:已知:如图,B=ACD. 求证:AC2=ABAD.证明:B=ACD,A=A, AC2=ABAD.5.选做题: 已知:如图,AD=2DB,AE=2EC. 求证:(1); (2)DEBC.(五)归纳小结,布置作业师:本节课我们利用相似三角形的判定定理做了几个题目,通过做这几个题目,你有什么体会?生:(让几名学生说) (作业:P54习题3(2).4.5.)四、板书设计如果那么 例如
24、果那么如果那么总 第16课时执教人(备课人): 虞福中 课题:27.2.1相似三角形的判定一、教学目标1.会利用判定定理证明简单图形中的两个直角三角形相似,进而得出边角关系.2.培养推理论证能力,发展空间观念.二、教学重点和难点1.重点:利用判定定理证明简单图形中的两个直角三角形相似.2.难点:找相似三角形的对应边.三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“”,错的画“”. (1)两个全等三角形一定相似; ( ) (2)两个相似三角形一定全等; ( ) (3)两个等腰三角形一定相似; ( ) (4)顶角相等的两个等腰三角形一定相似; ( ) (5)两个直角三角形一定相似; (
25、) (6)有一个锐角对应相等的两个直角三角形一定相似; ( ) (7)两个等腰直角三角形一定相似; ( ) (8)两个等边三角形一定相似. ( )2.填空: (1)如图,BECD,则 , (2)如图,ABDE,则 , (3)如图,B=ADE,则 ,(二)创设情境,导入新课师:上节课我们利用相似三角形的判定定理做了几个题目,这节课我们再来做几个题目,先看一道例题.(三)尝试指导,讲授新课 (师出示例题)例 已知:如图,在RtABC中,CD是斜边上的高. 求证:(1)ACDCBD; (2)CD2=ADBD. (先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:在RtAB
26、C中,A=90-B, 在RtCBD中,BCD=90-B, A=BCD. 而ADC=CDB=90, ACDCBD. CD2=ADBD. (列时,要让学生自己找CD,AD的对应边,并强调找对应边的方法)(四)试探练习,回授调节3.已知:如图,在RtABC中,CDAB于D. 求证:(1)CBDABC; (2)BC2=ABBD.4.已知,如图,ABCABC,AD和AD分别是BC和BC上的高. 求证:.(五)归纳小结,布置作业师:(指准图)本节课我们学习了证明两个直角三角形相似.两个直角三角形已经有一个直角对应相等,所以只要证明一个锐角对应相等就能得出这两个直角三角形相似.课外补充作业:5.已知:如图,
27、在RtABC中,DEAB于E点,AE=3,AD=4,AB=6,求AC.6.已知:如图,在ABC中,CD是AB上的高,CD2=ADBD. 求证:(1)CBDACD; (2)ACB=90.总 第17课时执教人(备课人): 虞福中 课题:27.2.2相似三角形应用举例一、教学目标1.经历对实际问题的思考和讨论过程,会利用相似三角形解决高度测量问题.2.培养把实际问题转化为数学问题的能力,发展应用意识.二、教学重点和难点1.重点:利用相似三角形解决高度测量问题.2.难点:探索如何利用相似三角形解决高度测量问题.三、教学过程(一)创设情境,导入新课师:从初一到现在,我们已经学了不少图形的知识,我们学过相
28、交线平行线,我们学过三角形四边形,我们学过圆,这些天我们又学了相似三角形.这些关于图形的知识是怎么形成的呢?(稍停)据说在很久很久以前,埃及的尼罗河水每年都会泛滥,两岸的田地就被淹没,水退后人们要重新划定田界,这便促使人们学会了计算简单图形边长、面积的方法,逐步形成了图形的知识.可见,图形知识是由于测量的实际需要而形成的.本节课我们要学的也及测量有关,我们要利用相似三角形的知识来解决一个测量问题,先来看这样一个实际问题.(二)尝试指导,讲授新课 (师出示下图)师:(指图)这是旗杆,旗杆很高,怎么测量出旗杆的高度?请大家想出一个可行的测量办法.(让生思考一会儿,等到有一部分学生举手)师:有些同学
29、已经有了办法,大家还是把自己的想法先在小组里交流交流. (生小组交流,师巡视倾听)师:哪位同学来说说你们小组讨论的情况?生:(让几名同学说,师作适当评价,譬如有些想法只是一种想法不具有可行性)师:测量旗杆的高度有很多办法,其中有一种比较好的办法是利用相似三角形来测量,怎么利用相似三角形来测量?师:旗杆在地上会有影子,假如这条线是旗杆的影子(边讲边画图).我们在旗杆影子的顶端立一根木杆(边讲边画图),木杆在地上也会影子,这条线是木杆的影子(边讲边画图).现在连结这两条线段(边讲边连结),就构成了两个三角形,我们把三角形的顶点都标上字母(标字母,画好的图如下所示).师:(指准图)ABC及DEA相似
30、吗?生:(齐答)相似.师:为什么相似?(让生思考一会儿再叫学生)生:(让一两名学生回答)师:(指准图)因为旗杆和木杆都垂直立在地上,所以C、DAE都是直角(边讲边在图中作直角符号).师:(指准图)而DEAB,为什么?(稍停)因为DE是太阳光线,AB也是太阳光线,太阳光线是平行的,所以DEAB.师:(指准图)因为DEAB,所以BAC=D(边讲边在图中作角的符号),所以ABCDEA.师:假如我们量出旗杆影子AC的长度为8米(边讲边在图中标:8m),木杆的高度为2米(边讲边在图中标:2m),木杆影子的长度为1.6米(边讲边在图中标:1.6m),那么旗杆高度是多少米?(边讲边在图中标:?)大家算一算.
31、(生计算)师:旗杆的高度是多少米?生:(齐答)10米.师:好了,下面我们把求旗杆高度的过程完整地写出来. (以下师边讲解边板书,解答过程如下) 解:DE,AB是太阳光线, DEAB.BAC=D.而C=DAE=90, ABCDEA.,即. BC=10(米). 因此,旗杆的高度为10米.(三)试探练习,回授调节1.填空:如图,在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋高楼的影长为90m,则这栋高楼的高度是 m.2.填空:如图,测得BD=120m,DC=60m,EC=50m,则河宽AB= m.(四)归纳小结,布置作业师:本节课我们利用相似三角形解决了测量旗杆高度的问题,通过解决
32、这个问题,不知道大家有没有意识到,其实测量可以分成两种,一种是可以直接测量的,譬如,我们的身高,教室的长度,马路的宽度,这些都可以直接测量.另一种是不能直接测量的,譬如,旗杆的高度,珠峰的高度,地球和月亮的距离,这些都不能直接测量.不能直接测量的问题怎么解决?(稍停)解决不能直接测量的问题,实质上是把不能直接测量的问题转化为可以直接测量的问题.(指准图)譬如,旗杆的高度是不能直接测量的,但它的影子,还有木杆及影子的长度都是可以直接测量,利用相似三角形可以求出旗杆的高度.师:不能直接测量就利用相似三角形间接地测量,这种想法很巧妙很高明,从中我们可以看到数学知识在解决实际问题中的作用,看到数学的价值,看到人的聪明才智. (作业:P55习题10.11.)四、板书设计(略)第 11 页