《高等数学下册期末考试试题及答案(1).docx》由会员分享,可在线阅读,更多相关《高等数学下册期末考试试题及答案(1).docx(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高等数学A(下册)期末考试试题大题一二三四五六七小题12345得分一、 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,则 2、设,则 3、曲面在点处的切平面方程为 4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数在处收敛于 ,在处收敛于 5、设为连接及两点的直线段,则 以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级二、 解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程2、求由曲面及所围成的立体体积3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?
2、4、设,其中具有二阶连续偏导数,求5、计算曲面积分其中是球面被平面截出的顶部三、 (本题满分9分) 抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值及最小值 (本题满分10分)计算曲线积分,其中为常数,为由点至原点的上半圆周四、 (本题满分10分)求幂级数的收敛域及和函数五、 (本题满分10分)计算曲面积分,其中为曲面的上侧六、 (本题满分6分)设为连续函数,其中是由曲面及所围成的闭区域,求 高等数学A(下册)期末考试试题【A卷】一、 填空题【每小题4分,共20分】 1、; 2、;3、; 4、3,0; 5、.二、 试解下列各题【每小题7分,共35分】1、解:方程两边对求导,得, 从而
3、,.【4】该曲线在处的切向量为.【5】故所求的切线方程为.【6】法平面方程为 即 .【7】、解:,该立体在面上的投影区域为.【2】故所求的体积为.【7】、解:由,知级数发散【3】 又,.故所给级数收敛且条件收敛【7】、解:, 【3】【7】、解:的方程为,在面上的投影区域为又,.【】故.【7】三、【9分】解:设为该椭圆上的任一点,则点到原点的距离为【1】令,则由,解得,于是得到两个可能极值点【7】又由题意知,距离的最大值和最小值一定存在,所以距离的最大值及最小值分别在这两点处取得故 【9】四、【10分】 解:记及直线段所围成的闭区域为,则由格林公式,得【5】而【8】 【10】五、【10分】解:,收敛区间为 【2】又当时,级数成为,发散;当时,级数成为,收敛【4】故该幂级数的收敛域为【5】令(),则, () 【8】于是,().【10】六、【10分】解:取为的下侧,记及所围成的空间闭区域为,则由高斯公式,有. 【5】 .【7】而. 【9】. 【10】七、【6分】解:. 【2】. 【4】故 【6】第 4 页