定积分的几何应用教案.docx

上传人:叶*** 文档编号:55360597 上传时间:2022-10-30 格式:DOCX 页数:2 大小:42.80KB
返回 下载 相关 举报
定积分的几何应用教案.docx_第1页
第1页 / 共2页
定积分的几何应用教案.docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《定积分的几何应用教案.docx》由会员分享,可在线阅读,更多相关《定积分的几何应用教案.docx(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、4.3.1 定积分在几何上的应用教材:高等数学第一册第四版,四川大学数学学院高等数学教研室,2009 第四章第三节 定积分的应用教学目的:1. 理解掌握定积分的微元法;2. 会用微元法计算平面图形的面积、立体的体积、平面曲线的弧长、旋转曲面的面积。教学重点:定积分的微元法。教学难点:计算平面图形的面积、立体体积、平面曲线弧长、旋转曲面面积时的微元如何选取和理解。教学时数:3学时教学过程设计:通过大量例题来理解用微元法求定积分在几何上的各种应用。部分例题:(1)求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间a,b上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的

2、图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线和直线x=l,x=2及x轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为 (2)求旋转体的体积 (I)由连续曲线y=f(x)及直线x=a、x=b(ab) 及x轴围成的平面图形绕x轴旋转一周而成的旋转体的体积为。()由连续曲线y=g(y)及直线y=c、y=d(cd)及y轴围成的平面图形绕y轴旋转一周而成的旋转体的体积为。(III)由连续曲线y=f(x)( )及直线x=a、x=b( b)及y轴围成的平面图形绕y轴旋转一

3、周而成的旋转体的体积为。例如:求椭圆所围成的图形分别绕x轴和y轴旋转一周而成的旋转体的体积。 分析:椭圆绕x轴旋转时,旋转体可以看作是上半椭圆,及x轴所围成的图形绕轴旋转一周而成的,因此椭圆所围成的图形绕x轴旋转一周而成的旋转体的体积为椭圆绕y轴旋转时,旋转体可以看作是右半椭圆,及y轴所围成的图形绕y轴旋转一周而成的,因此椭圆所围成的图形绕y轴旋转一周而成的旋转体的体积为(3)求平面曲线的弧长 (I)、设曲线弧由参数方程给出其中在上连续,则该曲线弧的长度为。()设曲线弧的极坐标方程为,其中在上连续,则该曲线弧的长度为。例如:求曲线从x=l到x=e之间一段曲线的弧长。解:,于是弧长微元为,。所以,所求弧长为:。第 2 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁