《五大常用算法ppt资料优秀PPT.ppt》由会员分享,可在线阅读,更多相关《五大常用算法ppt资料优秀PPT.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、五大常用算法介绍及其在图像处理中的应用五大常用算法介绍及其在图像处理中的应用Your company slogan五大常用算法五大常用算法 分治法 1 1 动态规划算法 2 2 贪心算法 3 3 分支限界法 5 5 回溯法 4 4Your company slogan分治法分治法设计思想:设计思想:设计思想:设计思想:将一个难以干脆解决的大问题,分割成一些规模较小的相同问题,以便各个击破,将一个难以干脆解决的大问题,分割成一些规模较小的相同问题,以便各个击破,将一个难以干脆解决的大问题,分割成一些规模较小的相同问题,以便各个击破,将一个难以干脆解决的大问题,分割成一些规模较小的相同问题,以便各
2、个击破,分而治之。分而治之。分而治之。分而治之。分治策略:分治策略:分治策略:分治策略:对于一个规模为对于一个规模为对于一个规模为对于一个规模为n n的问题,若该问题可以简洁地解决则干脆解决,否则将其分解为的问题,若该问题可以简洁地解决则干脆解决,否则将其分解为的问题,若该问题可以简洁地解决则干脆解决,否则将其分解为的问题,若该问题可以简洁地解决则干脆解决,否则将其分解为k k个规模较小的子问题,这些子问题相互独立且与原问题形式相同,递归地解这些子问题,个规模较小的子问题,这些子问题相互独立且与原问题形式相同,递归地解这些子问题,个规模较小的子问题,这些子问题相互独立且与原问题形式相同,递归地
3、解这些子问题,个规模较小的子问题,这些子问题相互独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。然后将各子问题的解合并得到原问题的解。然后将各子问题的解合并得到原问题的解。然后将各子问题的解合并得到原问题的解。(分治与递归分治与递归分治与递归分治与递归)适用状况:适用状况:适用状况:适用状况:1)1)该问题的规模缩小到确定的程度就可以简洁地解决该问题的规模缩小到确定的程度就可以简洁地解决该问题的规模缩小到确定的程度就可以简洁地解决该问题的规模缩小到确定的程度就可以简洁地解决;2)2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质该问题可以
4、分解为若干个规模较小的相同问题,即该问题具有最优子结构性质该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;3)3)利用该问题分解出的子问题的解可以合并为该问题的解;利用该问题分解出的子问题的解可以合并为该问题的解;利用该问题分解出的子问题的解可以合并为该问题的解;利用该问题分解出的子问题的解可以合并为该问题的解;4)4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。该问题所分解出的各个子问题是相互独立的,
5、即子问题之间不包含公共的子子问题。该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。Your company slogan分治法分治法分治法在每一层递归上都有三个步骤:分治法在每一层递归上都有三个步骤:分治法在每一层递归上都有三个步骤:分治法在每一层递归上都有三个步骤:分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;解决:若子问题规模
6、较小而简洁被解决则干脆解,否则递归地解各个子问题解决:若子问题规模较小而简洁被解决则干脆解,否则递归地解各个子问题解决:若子问题规模较小而简洁被解决则干脆解,否则递归地解各个子问题解决:若子问题规模较小而简洁被解决则干脆解,否则递归地解各个子问题合并:将各个子问题的解合并为原问题的解。合并:将各个子问题的解合并为原问题的解。合并:将各个子问题的解合并为原问题的解。合并:将各个子问题的解合并为原问题的解。分治法的一般设计模式:分治法的一般设计模式:分治法的一般设计模式:分治法的一般设计模式:Divide-and-Conquer(P)Divide-and-Conquer(P)1.if|P|n01.
7、if|P|n02.thenreturn(ADHOC(P)2.thenreturn(ADHOC(P)3.3.将将将将P P分解为较小的子问题分解为较小的子问题分解为较小的子问题分解为较小的子问题P1,P2,.,PkP1,P2,.,Pk4.fori1tok4.fori1tok5.doyiDivide-and-Conquer(Pi)5.doyiDivide-and-Conquer(Pi)递归解决递归解决递归解决递归解决PiPi6.TMERGE(y1,y2,.,yk)6.TMERGE(y1,y2,.,yk)合并子问题合并子问题合并子问题合并子问题7.return(T)7.return(T)Your c
8、ompany slogan分治法分治法 分治法在医学图像处理中的应用分治法在医学图像处理中的应用分治法在医学图像处理中的应用分治法在医学图像处理中的应用传统的中值滤波算法须要对滤波窗口内的全部像素进行排序,再依传统的中值滤波算法须要对滤波窗口内的全部像素进行排序,再依传统的中值滤波算法须要对滤波窗口内的全部像素进行排序,再依传统的中值滤波算法须要对滤波窗口内的全部像素进行排序,再依据排序的结果选取中值。常用的排序算法有很多(插入排序、交换排据排序的结果选取中值。常用的排序算法有很多(插入排序、交换排据排序的结果选取中值。常用的排序算法有很多(插入排序、交换排据排序的结果选取中值。常用的排序算法
9、有很多(插入排序、交换排序、选择排序、归并排序、支配排序),以快速排序为例,其算法的序、选择排序、归并排序、支配排序),以快速排序为例,其算法的序、选择排序、归并排序、支配排序),以快速排序为例,其算法的序、选择排序、归并排序、支配排序),以快速排序为例,其算法的思想是将大问题分解为若干个规模较小但结构与大问题相像的问题,思想是将大问题分解为若干个规模较小但结构与大问题相像的问题,思想是将大问题分解为若干个规模较小但结构与大问题相像的问题,思想是将大问题分解为若干个规模较小但结构与大问题相像的问题,递归地解决这些小问题后,将小问题的解结合为大问题的解。递归地解决这些小问题后,将小问题的解结合为
10、大问题的解。递归地解决这些小问题后,将小问题的解结合为大问题的解。递归地解决这些小问题后,将小问题的解结合为大问题的解。20122012年林清华等人提出一种新型快速中值滤波算法,主要应用于医年林清华等人提出一种新型快速中值滤波算法,主要应用于医年林清华等人提出一种新型快速中值滤波算法,主要应用于医年林清华等人提出一种新型快速中值滤波算法,主要应用于医学图像学图像学图像学图像.文中方法利用中值滤波算法对滤波窗口内其他像素点的排列依文中方法利用中值滤波算法对滤波窗口内其他像素点的排列依文中方法利用中值滤波算法对滤波窗口内其他像素点的排列依文中方法利用中值滤波算法对滤波窗口内其他像素点的排列依次不作
11、要求的特点,将基于排序找寻中值的过程转换为基于分治查找次不作要求的特点,将基于排序找寻中值的过程转换为基于分治查找次不作要求的特点,将基于排序找寻中值的过程转换为基于分治查找次不作要求的特点,将基于排序找寻中值的过程转换为基于分治查找中值的过程。在分治查找过程中,利用医学图像未受干扰时图像中像中值的过程。在分治查找过程中,利用医学图像未受干扰时图像中像中值的过程。在分治查找过程中,利用医学图像未受干扰时图像中像中值的过程。在分治查找过程中,利用医学图像未受干扰时图像中像素值的变更是渐变的特性,优先选用中心点旁边的像素值进行分治查素值的变更是渐变的特性,优先选用中心点旁边的像素值进行分治查素值的
12、变更是渐变的特性,优先选用中心点旁边的像素值进行分治查素值的变更是渐变的特性,优先选用中心点旁边的像素值进行分治查找,以达到提高算法效率的目的。找,以达到提高算法效率的目的。找,以达到提高算法效率的目的。找,以达到提高算法效率的目的。Your company slogan动态规动态规划划算法算法基本概念基本概念动态规划:在多阶段决策问题中,各个阶段实行的决策,一般来说是和时间(先后)动态规划:在多阶段决策问题中,各个阶段实行的决策,一般来说是和时间(先后)有关的,决策依靠于当前状态,又随机引起状态的转移,一个决策序列就是在变更的有关的,决策依靠于当前状态,又随机引起状态的转移,一个决策序列就是
13、在变更的状态中产生出来的,故有状态中产生出来的,故有“动态动态”的含义,这种解决多阶段决策最优化的过程为动态规划。的含义,这种解决多阶段决策最优化的过程为动态规划。多阶段决策过程:有一类活动的过程,可将过程分为若干个相互联系的阶段,在它多阶段决策过程:有一类活动的过程,可将过程分为若干个相互联系的阶段,在它的每一阶段都要做出决策,从而使整个过程达到最好的活动效果,这种把一个问题看的每一阶段都要做出决策,从而使整个过程达到最好的活动效果,这种把一个问题看作是一个前后关联具有链状结构的多阶段过程,就称为多阶段决策过程。作是一个前后关联具有链状结构的多阶段过程,就称为多阶段决策过程。最优化原理:一个
14、最优化策略具有这样的性质,不论过去状态和决策如何,对前面最优化原理:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必需构成最优策略。的决策所形成的状态而言,余下的诸决策必需构成最优策略。Your company slogan动态规划算法动态规划算法 基本思想基本思想基本思想基本思想将过程分成若干个相互联系的阶段,即子问题,将各阶段按确定的将过程分成若干个相互联系的阶段,即子问题,将各阶段按确定的将过程分成若干个相互联系的阶段,即子问题,将各阶段按确定的将过程分成若干个相互联系的阶段,即子问题,将各阶段按确定的次序排列好之后,对次序排列好之后,对
15、次序排列好之后,对次序排列好之后,对 于某个给定的阶段状态,先求解子问题,然后从于某个给定的阶段状态,先求解子问题,然后从于某个给定的阶段状态,先求解子问题,然后从于某个给定的阶段状态,先求解子问题,然后从这些子问题的解得到原问题的解,对于重复出现的子问题,只在第一这些子问题的解得到原问题的解,对于重复出现的子问题,只在第一这些子问题的解得到原问题的解,对于重复出现的子问题,只在第一这些子问题的解得到原问题的解,对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时次遇到的时候对它进行求解,并把答案
16、保存起来,让以后再次遇到时次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时干脆引用答案。干脆引用答案。干脆引用答案。干脆引用答案。适用条件适用条件适用条件适用条件(1)(1)最优化子结构:假如问题的最优解所包含的子问题的解也是最优最优化子结构:假如问题的最优解所包含的子问题的解也是最优最优化子结构:假如问题的最优解所包含的子问题的解也是最优最优化子结构:假如问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。的,就称该问题具有最优子结构,即满足最优化原理。的,就称该问题具有最优子结构,即满足最优化原理。的,就称该问题具有最优子结构,即满足最优化原理
17、。(2)(2)无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的无后效性:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关。状态有关。状态有关。状态有关。(3 3)有重叠子问题:即子问题之间是不独立的,一个子问题在下一)有重叠子问题:即
18、子问题之间是不独立的,一个子问题在下一)有重叠子问题:即子问题之间是不独立的,一个子问题在下一)有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次运用到。(该性质并不是动态规划适用的必要阶段决策中可能被多次运用到。(该性质并不是动态规划适用的必要阶段决策中可能被多次运用到。(该性质并不是动态规划适用的必要阶段决策中可能被多次运用到。(该性质并不是动态规划适用的必要条件,但是假如没有这条性质,动态规划算法同其他算法相比就不具条件,但是假如没有这条性质,动态规划算法同其他算法相比就不具条件,但是假如没有这条性质,动态规划算法同其他算法相比就不具条件,但是假如没有这条性质,动
19、态规划算法同其他算法相比就不具备优势)备优势)备优势)备优势)Your company slogan动态规划算法动态规划算法基本步骤基本步骤基本步骤基本步骤动态规划所处理的问题是一个多阶段决策问题,一般由初始状态起动态规划所处理的问题是一个多阶段决策问题,一般由初始状态起动态规划所处理的问题是一个多阶段决策问题,一般由初始状态起动态规划所处理的问题是一个多阶段决策问题,一般由初始状态起先,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一先,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一先,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一先,通过对中间阶段决策的选择,达
20、到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路途个决策序列,同时确定了完成整个过程的一条活动路途个决策序列,同时确定了完成整个过程的一条活动路途个决策序列,同时确定了完成整个过程的一条活动路途(通常是求最优通常是求最优通常是求最优通常是求最优的活动路途的活动路途的活动路途的活动路途)。如图所示。动态规划的设计都有着确定的模式,一般要。如图所示。动态规划的设计都有着确定的模式,一般要。如图所示。动态规划的设计都有着确定的模式,一般要。如图所示。动态规划的设计都有着确定的模式,一般要阅历以下几个步骤。阅历以下几个步骤。阅历以下几个步骤。阅历以下几个步骤。初始状态初始状态
21、初始状态初始状态决策决策决策决策决策决策决策决策决策决策决策决策结束状态结束状态结束状态结束状态图图图图11动态规划决策过程示意图动态规划决策过程示意图动态规划决策过程示意图动态规划决策过程示意图实际应用中可以按以下几个简化的步骤进行设计:实际应用中可以按以下几个简化的步骤进行设计:实际应用中可以按以下几个简化的步骤进行设计:实际应用中可以按以下几个简化的步骤进行设计:(1 1)分析最优解的性质,并刻画其结构特征。)分析最优解的性质,并刻画其结构特征。)分析最优解的性质,并刻画其结构特征。)分析最优解的性质,并刻画其结构特征。(2 2)递归的定义最优解。)递归的定义最优解。)递归的定义最优解。
22、)递归的定义最优解。(3 3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值。值。值。值。(4 4)依据计算最优值时得到的信息,构造问题的最优解。)依据计算最优值时得到的信息,构造问题的最优解。)依据计算最优值时得到的信息,构造问题的最优解。)依据计算最优值时得到的信息,构造问题的最优解。Your company slogan动态规划算法动态规划算法基于动态规划算法分割椎骨上下边界的方法基于动态规划算法分割椎骨上下边界
23、的方法基于动态规划算法分割椎骨上下边界的方法基于动态规划算法分割椎骨上下边界的方法基本思想基本思想基本思想基本思想 依据椎骨上下缘灰度与形态信息来找寻椎骨的上下边界,在梯度图依据椎骨上下缘灰度与形态信息来找寻椎骨的上下边界,在梯度图依据椎骨上下缘灰度与形态信息来找寻椎骨的上下边界,在梯度图依据椎骨上下缘灰度与形态信息来找寻椎骨的上下边界,在梯度图像中,最终的分割结果被定义为具有最小累积代价和的像中,最终的分割结果被定义为具有最小累积代价和的像中,最终的分割结果被定义为具有最小累积代价和的像中,最终的分割结果被定义为具有最小累积代价和的“路径路径路径路径”,该,该,该,该“路径路径路径路径”由梯
24、度图像中每一列上唯一的点组成,即从梯度图像最左一列到由梯度图像中每一列上唯一的点组成,即从梯度图像最左一列到由梯度图像中每一列上唯一的点组成,即从梯度图像最左一列到由梯度图像中每一列上唯一的点组成,即从梯度图像最左一列到最右一列计算累计代价,找出最终一列中累积代价和最小的像素点,利最右一列计算累计代价,找出最终一列中累积代价和最小的像素点,利最右一列计算累计代价,找出最终一列中累积代价和最小的像素点,利最右一列计算累计代价,找出最终一列中累积代价和最小的像素点,利用背向搜寻策略找到最终的最优用背向搜寻策略找到最终的最优用背向搜寻策略找到最终的最优用背向搜寻策略找到最终的最优“路径路径路径路径”
25、,最终处在最优,最终处在最优,最终处在最优,最终处在最优“路径路径路径路径”上的上的上的上的全部像素点构成了最终分割结果。全部像素点构成了最终分割结果。全部像素点构成了最终分割结果。全部像素点构成了最终分割结果。算法实现过程算法实现过程算法实现过程算法实现过程 1.1.1.1.计算椎骨图像梯度计算椎骨图像梯度计算椎骨图像梯度计算椎骨图像梯度 2.2.2.2.定义与计算边界累积代价定义与计算边界累积代价定义与计算边界累积代价定义与计算边界累积代价 3.3.3.3.运用背向搜寻策略确定最优边界运用背向搜寻策略确定最优边界运用背向搜寻策略确定最优边界运用背向搜寻策略确定最优边界 Your compa
26、ny slogan动态规划算法动态规划算法1.1.计算椎骨图像梯度:计算椎骨图像梯度:Your company slogan动态规划算法动态规划算法2.2.定义与计算定义与计算定义与计算定义与计算边界累计代价边界累计代价边界累计代价边界累计代价内部代价、外部代价、局部代价内部代价、外部代价、局部代价内部代价、外部代价、局部代价内部代价、外部代价、局部代价Your company slogan动态规划算法动态规划算法3.3.运用背向搜寻策略确定最优边界运用背向搜寻策略确定最优边界 对梯度图像中每个像素点都计算累积代价之后,须要利用背向搜寻策对梯度图像中每个像素点都计算累积代价之后,须要利用背向搜
27、寻策略找到最终的最优略找到最终的最优“路径路径”。首先找到最终一列中累积代价和最小的像素。首先找到最终一列中累积代价和最小的像素点,该累积代价代表了最优点,该累积代价代表了最优“路径路径”上全部点的累积代价和。从该像素点上全部点的累积代价和。从该像素点动身,依次向前追踪最优动身,依次向前追踪最优“路径路径”上的像素点,直到第一列。在最优路径上的像素点,直到第一列。在最优路径上的全部像素点就构成了最终的目标边界轮廓,即最终的边界分割结上的全部像素点就构成了最终的目标边界轮廓,即最终的边界分割结果。果。Your company slogan动态规划算法动态规划算法 椎骨分割结果椎骨分割结果椎骨分割
28、结果椎骨分割结果(a)(b)(c)(d)(e)(f)(a)(b)(c)(d)(e)(f)Your company slogan贪贪心算法心算法贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心法的基本思路:从问题的某一个初始解动身逐步靠近给定的目标,以尽可能快的地贪心法的基本思路:从问题的某一个初始解动身逐步靠近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不
29、能再接着前进时,算法停止。求得更好的解。当达到某算法中的某一步不能再接着前进时,算法停止。贪心策略适用的前提:局部最优策略能导致产生全局最优解。贪心策略适用的前提:局部最优策略能导致产生全局最优解。贪心算法不是对全部问题都能得到整体最优解,选择的贪心策略必需具备无后效性,即贪心算法不是对全部问题都能得到整体最优解,选择的贪心策略必需具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。对于范围相当广泛的很某个状态以后的过程不会影响以前的状态,只与当前状态有关。对于范围相当广泛的很多问题它能产生整体最优解或者是整体最优解的近似解。多问题它能产生整体最优解或者是整体最优解的近似解
30、。Your company slogan贪心算法贪心算法例例在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。假如不借助手电筒的在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。假如不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。假如各自单独过桥的话,四人所须要的时间分别是只够让两个人同时过。假如各自单独过桥的话,四人所须要的时间分别是1 1、2 2、5 5、8 8分钟;分钟;而假如两人同时过桥,所须要的时间就是走得比较慢的那个人单独
31、行动时所需的时间。问题而假如两人同时过桥,所须要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这四人尽快过桥是,如何设计一个方案,让这四人尽快过桥。假设这四人分别为假设这四人分别为A A、B B、C C、D D。很明显,起先两人拿着手电筒过桥后,手电筒就在桥的。很明显,起先两人拿着手电筒过桥后,手电筒就在桥的另一边了,此时须要已经过桥的那两人中的一个再把手电筒送回桥这边。送手电筒回来过桥另一边了,此时须要已经过桥的那两人中的一个再把手电筒送回桥这边。送手电筒回来过桥也要化时间,所以要选一个跑得比较快的。一个很自然的想法就是,每次让跑得最快的也要化时间,所以要选一
32、个跑得比较快的。一个很自然的想法就是,每次让跑得最快的A A陪陪着另一个过桥,然后着另一个过桥,然后A A快速地跑回来,再陪下一位过去,最终全部人就都可以过桥了。快速地跑回来,再陪下一位过去,最终全部人就都可以过桥了。AABB2 2AA1 1ACAC5 5AA1 1ADAD8 8一共就是一共就是2+1+5+1+8=172+1+5+1+8=17分钟。分钟。Your company slogan贪心算法贪心算法但其实有更快的方法:但其实有更快的方法:A AB B2 2AA1 1C CD D8 8BB2 2A AB B2 2一共是一共是2+1+8+2+2=152+1+8+2+2=15分钟。这个方法的
33、聪慧之处在于让两个走得最慢的人同时过桥,分钟。这个方法的聪慧之处在于让两个走得最慢的人同时过桥,这样花去的时间只是走得最慢的那个人花的时间,而走得次慢的那位就不用另花时间过这样花去的时间只是走得最慢的那个人花的时间,而走得次慢的那位就不用另花时间过桥了。可以把全部可能的方案都列举一遍,就会发觉这是最快的方案了。桥了。可以把全部可能的方案都列举一遍,就会发觉这是最快的方案了。Your company slogan贪心算法贪心算法20152015年周得水等人提出一种基于年周得水等人提出一种基于DijkstraDijkstra的贪心算法来实现模糊连接度的快速计算。的贪心算法来实现模糊连接度的快速计算
34、。基于模糊连接度的图像分割过程如下:基于模糊连接度的图像分割过程如下:(1 1)由用户在图像中选取种子点;)由用户在图像中选取种子点;(2 2)计算图像中各点相对于种子点的模糊连接度,同时得到各点到种子点的最优路径;)计算图像中各点相对于种子点的模糊连接度,同时得到各点到种子点的最优路径;(3 3)对得到的最优路径进行各点相对于种子点的属性相像度计算,同时得到图像中各点新)对得到的最优路径进行各点相对于种子点的属性相像度计算,同时得到图像中各点新的隶属度;的隶属度;(4 4)用户通过选取阈值来分割图像。)用户通过选取阈值来分割图像。Your company slogan 回溯法回溯法基本概念基
35、本概念回溯法是一种选优搜寻法,按选优条件向前搜寻,以达到目标。但当探究到某一步时,发回溯法是一种选优搜寻法,按选优条件向前搜寻,以达到目标。但当探究到某一步时,发觉原先选择并不是最优或达不到目标,就退回一步重新选择,这种走不通就退回再走的方觉原先选择并不是最优或达不到目标,就退回一步重新选择,这种走不通就退回再走的方法称为回溯法。法称为回溯法。基本思想基本思想在包含问题的全部解的解空间树中,依据深度优先搜寻的策略,从根结点动身深度探究解在包含问题的全部解的解空间树中,依据深度优先搜寻的策略,从根结点动身深度探究解空间树。当探究到某一结点时,要先推断该结点是否包含问题的解,假如包含,就从该结空间
36、树。当探究到某一结点时,要先推断该结点是否包含问题的解,假如包含,就从该结点动身接着探究下去,假如该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回点动身接着探究下去,假如该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜寻算法)。溯法就是对隐式图的深度优先搜寻算法)。若用回溯法求问题的全部解时,要回溯到根,且根结点的全部可行的子树都要已被搜寻遍若用回溯法求问题的全部解时,要回溯到根,且根结点的全部可行的子树都要已被搜寻遍才结束。才结束。而若运用回溯法求任一个解时,只要搜寻到问题的一个解就可以结束而若运用回溯法求任一个解时,只要搜寻到问题的一个解就可以结束。
37、Your company slogan回溯法回溯法回溯法在图像分割中的应用回溯法在图像分割中的应用 2015 2015年尹雨山等人提出一种回溯搜寻优化算法帮助的多阈值图像分割方法。文中方年尹雨山等人提出一种回溯搜寻优化算法帮助的多阈值图像分割方法。文中方法分别将法分别将OtsuOtsu法和法和KapurKapur法作为目标函数,接受回溯搜寻优化算法求解目标函数,实现多阈法作为目标函数,接受回溯搜寻优化算法求解目标函数,实现多阈值图像分割。仿真结果说明回溯搜寻优化算法求解的多阈值图像分割是可行的,与其他的多值图像分割。仿真结果说明回溯搜寻优化算法求解的多阈值图像分割是可行的,与其他的多阈值分割方
38、法比较,文中提出的方法具有较好的性能。阈值分割方法比较,文中提出的方法具有较好的性能。Your company slogan分支限界法分支限界法分支是指接受广度优先的策略,依次搜寻当前结点的全部分支,也就是全部相邻结点,分支是指接受广度优先的策略,依次搜寻当前结点的全部分支,也就是全部相邻结点,抛弃不满足约束条件的结点,其余结点加入活结点表。抛弃不满足约束条件的结点,其余结点加入活结点表。分支限界法的搜寻策略是:分支限界法的搜寻策略是:在扩展结点处,先生成其全部的儿子结点(分支),然后在扩展结点处,先生成其全部的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展对点。为了有效地选择下一扩
39、展结点,以加速搜寻再从当前的活结点表中选择下一个扩展对点。为了有效地选择下一扩展结点,以加速搜寻的进程,在每一活结点处,计算一个函数值(限界),并依据这些已计算出的函数值,从的进程,在每一活结点处,计算一个函数值(限界),并依据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜寻朝着解空间树上有最优解的当前活结点表中选择一个最有利的结点作为扩展结点,使搜寻朝着解空间树上有最优解的分支分支 推动,以便尽快地找出一个最优解。然后从表中选择一个结点作为下一个结点,接着推动,以便尽快地找出一个最优解。然后从表中选择一个结点作为下一个结点,接着搜寻。搜寻。在分支限界法中,每一个
40、活结点只有一次机会成为扩展结点。活结点一旦成在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成 为扩展结为扩展结点,就一次性产生其全部儿子结点。在这些儿子结点中,那些导致不行行解或导致非最优点,就一次性产生其全部儿子结点。在这些儿子结点中,那些导致不行行解或导致非最优解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。此后,解的儿子结点被舍弃,其余儿子结点被子加入活结点表中。此后,从活结点表中取下一结从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程始终持续到找到所求的解或活点成为当前扩展结点,并重复上述结点扩展过程。这个过程始终持续到找到所求的解或活结点
41、表为空时为止。结点表为空时为止。Your company slogan小结小结 五大基本算法各自有其不行比拟的优势,目前他们在医学图像处理方向上的应用大多五大基本算法各自有其不行比拟的优势,目前他们在医学图像处理方向上的应用大多是改进算法,提高效率,然而当其思想运用于医学图像分割时取得了良好的效果。由此启是改进算法,提高效率,然而当其思想运用于医学图像分割时取得了良好的效果。由此启发我在以后的学习中,首先是要娴熟驾驭好图像处理领域的典型处理方法,多运用他们去发我在以后的学习中,首先是要娴熟驾驭好图像处理领域的典型处理方法,多运用他们去解决一些问题;其次是遇到新问题时要擅长分析问题,尝试用一些经典的高效方法来解决解决一些问题;其次是遇到新问题时要擅长分析问题,尝试用一些经典的高效方法来解决问题。问题。Your company sloganThank!