《机器人的焊接方法(共32页).doc》由会员分享,可在线阅读,更多相关《机器人的焊接方法(共32页).doc(38页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上1. 焊接机器人的系统构成焊接机器人是一种高度自动化的焊接设备采用机器人代替手工焊接作业是焊接制造业的发展趋势,是提高焊接质量、降低成本、改善工作环境的重要手段。机器人焊接作为现代制造技术发展的重要标志己被国内许多工厂所接受,并且越来越多的企业首选焊接机器人作为技术改造的方案。 焊接机器人是装上了焊钳或各种焊枪的工业机器人。工业机器人的运动控制系统涉及数学、自动控制理论等,内容很多。采用机器人进行焊接,光有一台机器人是不够的,还必须配备外围设备。常规的弧焊机器人系统由以5部分组成。1、机器人本体,一般是伺服电机驱动的 6 轴关节式操作机,它由驱动器、传动机构、机械手臂
2、、关节以及内部传感器等组成。它的任务是精确地保证机械手末端(悍枪)所要求的位置、姿态和运动轨迹。2、机器人控制柜,它是机器人系统的神经中枢,包括计算机硬件、软件和一些专用电路,负责处理机器人工作过程中的全部信息和控制其全部动作。3、焊接电源系统,包括焊接电源、专用焊枪等。4、焊接传感器及系统安全保护设施。5、焊接工装夹具。习惯上所说的电动机伺服系统,是指速度控制、伺服电动机和检测部件三部分;而且,将速度控制部分称之为伺服单元或驱动器。按照伺服系统的结构特点,它通常有四种基本结构类型:开环、闭环、半闭环及混合闭环。伺服单元的硬件一般由五部分构成:1 实现轴伺服电机的PID控制、或FUZZY(模糊
3、) 控制、或其它控制规律的伺服控制单片机;2 伺服控制模板,其功能是实现控制单片机输出数字量的D/A转换与输入到单片机的模拟量的A/D转换;3 伺服驱动功放,一般机器人的轴驱动电机的功率多在100W1000W的范围,多属中等功率,为此,由伺服控制模板给出的控制信号必须经功率放大才能推动电机;4 伺服电机是焊接机器人的轴伺服控制系统的控制对象。5 伺服电机的转速、位置检测装置(转速、位置传感器)。转速、位置检测装置的功能是实时检测轴伺服电机转速和电机角位移量,并将实时检测结果反馈给电动机伺服系统,以形成电动机伺服的闭环或半闭环控制系统。即便是开环控制系统,一般也需要电动机转速和电机角位移量的实时
4、检测参数。因此,转速、位置检测装置是机器人的轴伺服控制系统极重要的组成环节。 焊接机器人的轴伺服控制系统结构称为主从控制方式:它是采用主、从两级控制计算机实现系统的全部控制功能。主计算机实现轴伺服控制系统的管理、坐标变换、轨迹生成和系统自诊断等;从计算机实现所有关节的动作协调控制。主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。焊接机器人的轴伺服控制系统结构还可采用所谓“分散控制系统”。 对于小批量多品种、体积或质量较大的产品,可根据其工件的焊缝空间分布情况,采用简易焊接机器人工作站或焊接变位机和机器人组合的机器人工作站。以适用于“多品种、小批量”的柔性化生产
5、。对于工件体积小、易输送且批量大、品种规格多的产品将焊接工序细分,采用机器人与焊接专机组合的生产流水线,结合模块化的焊接夹具以及快速换模技术,以达到投资少、效率高的低成本自动化的目的。2.机器人的焊接方法焊接机器人最早只在点焊中得到应用,80年初,随着计算机技术、传感器技术的发展,弧焊机器人逐渐得到普及,特别是近十几年来由于世界范围内经济的高速发展,市场的激烈竞争使那些用于中、大批量生产的焊接自动化专机已不能适应小规模、多品种的生产模式逐渐被具有柔性的焊接机器人代替,焊接机器人得到了巨大的发展,焊接已成为工业机器人应用最大的领域之一,焊接机器人在汽车、摩托车、工程机械等领域都得到了广泛的应用。
6、目前世界拥有的80余万台工业机器人中,用于焊接的机器人可达40%以上。21适用于机器人的焊接方法 熔化极: l CO2气体保护焊 l 熔化极活性气体保护焊(MAG) l 熔化极惰性气体保护焊(MIG) 非熔化极: l钨极惰性气体保护焊 l等离子弧焊接与切割 l激光焊接与切割 钎焊火焰切割点焊在上面的焊接方法中,90%以上的机器人用于熔化极气体保护焊和点焊,进年来随着激光焊接与切割设备价格的降低,机器人在激光焊接与切割领域的应用数量在逐年增加。2.1 机器人焊接的特点2.1.1优点A. 自动焊接(1) 焊枪不会振动,焊接速度不会改变,能得到均匀、漂亮的焊缝。(2) 操作人员能远离噪音或高温区进行
7、行业。(3) 由于焊接条件是恒定的,所以能提高焊接质量。B. 焊接条件具有重复性(1) 不管什么时候,谁来作业或在什么地方都能焊接成相同的产品。(2) 在机器人上编制焊接工人所掌握的焊接条件之后,即便是新手也能进行高质量的焊接。(3) 能重复使用曾经用过的焊接条件,(而在半自动焊接时,由于经常要调整遥控盒上的旋钮,所以缺乏重复性)。C. 降低生产成本(1) 能缩短生产节拍,所以能提高产量。(2) 使用临时工就能完成焊接作业,所以减少了人工费用。(3) 不浪费焊接材料,能节约消耗品。D. 使用机器人带来的效益(1) 生产节拍明确,容易进行生产管理。(2) 能实现无人运行,机器人不会发牢骚。(3)
8、 能提高企业的形象。E.机器人焊接的特点 机器人是由计算机控制的、具有高度柔性的可编程自动化装置,因此利用机器人焊接具有以下特点: (1)机器人能适应产品多样化,有柔性,在一条生产线上可以混流生产若干种类型产品。同时对于生产量的变动和型号的更改,能迅速的改进生产线的编组更替,这是专用的自动化生产线不能比拟的,能发挥投资的长期效果。 (2)使用机器人焊接,可提高产品质量。为了使焊接作业机器人化,需要改变装配方法和加工工序,所以要提高诸如供给设备的零件、夹具、搬运工具等的精度,这些关系到产品的精度和焊接质量的提高,机器人化的结果,可得到稳定的高质量产品。 (3)使用机器人焊接可提高生产率。机器人的
9、作业效率,不随作业者变动,可以稳定生产计划,从而提高生产率。212机器人焊接时的主要注意事项A. 必须进行示教作业(注1) 在机器人进行自动焊接前,操作人员必须示教机器人焊枪的轨迹和设定焊接条件等。 由于必须示教,所以机器人不面向多品种少量生产的产品焊接(注2)B. 必须确保工件的精度(注3) 机器人没有眼睛,只能重复相同的动作。 机器人轨迹精度为0.1mm,以此精度重复相同的动作。 焊接偏差大于焊丝半径时,有可能焊接不好,所以工件精度应保持在焊丝半径之内。C. 焊接条件的设定取决于示教作业人员的技术水平 操作人员进行示教时必须输入焊接程序,焊枪姿态和角度,电流、电压、速度等焊接条件。 示教操
10、作人员必须充分掌握焊接知识和焊接技巧。D. 必须充分注意安全 机器人是一种高速的运动设备,在其进行自动运行时绝对不允许人靠近机器人(必须设置安全护栏)。 操作人员必须接受劳动安全方面的专门教育,否则不准操作。22焊接机器人的性能要求221弧焊机器人的性能要求在弧焊作业中,要求焊枪跟踪工件焊道运动,并不断填充金属形成焊缝,因此运动过程中速度的稳定性和轨道精度是两项重要的指标。一般情况下,焊接速度可取550mm/s,轨道精度可取0205mm。由于焊枪的姿态对焊缝质量也有一定的影响,因此希望在根踪焊道的同时,焊枪姿态的可调范围尽量大,还有其它一些性能要求,如摆动功能、焊接传感器(起始点检测、焊缝跟踪
11、)的接口功能、焊枪防碰功能等。1 焊接规范的设定。起弧、收弧参数。2 摆动功能。摆动频率、摆幅、摆动类型的设定。3 焊接传感器。起始点检测、焊缝跟踪传感器的接口功能。4 焊枪防碰功能。当焊枪受到不正常的阻力时,机器人停机,避免操作者和工具受到损坏。5 多层焊功能。应用该功能可以在第一层焊接示教完成后,实现其余各层的自动编程。6 再引弧功能。引弧失败后,自动重试。因此消除了焊接异常(引弧失败)发生时引起的作业中断,最大限度避免了因此而引起的全线停车。7 焊枪校正功能。焊枪与工件发生碰撞时,可通过简单操作进行校正。8 粘丝自动解除功能。焊接终了时如果检测出焊丝粘丝,则自动再通电解除粘丝,因此不必手
12、工剪断焊丝。9 断弧再启动功能。出现断弧时,机器人会按照指定的搭接量返回重新引弧焊接。因此无须补焊作业。222点焊机器人的性能要求对于点焊机器人运动速度是一个重要指标,要求能够快速完成小节距的多点定位(例如每0.3-0.4秒移动30-50mm节距后定位);为确保焊接质量,定位精度要求较高(一般为025mm);并具有较大的持重(50100Kg),以便携带内装变压器的焊钳。23机器人选择方法1机器人的结构类型的确定机器人类型的选择主要取决于机器人的目标作业类型,如汽车底盘的点焊用四自由度的点焊机器人就够了,复杂工件的焊接一般需要六自由度机器人。2手腕的容许载荷选择机器人时首先要考虑机器人的最大承载
13、能力,如对于OTC公司生产的DR-4000机器人其最大承载能力为6公斤,如下图表示。当安装标准焊枪时不会产生任何问题,但当用于搬运或其它类似的目的时,还应保证各腕部轴所承受的扭矩和转动惯量满足手册中规定的要求。3动作范围的确定机器人的种类确定后,还要检查其动作范围是否满足作业的要求。机器人的动作范围一般指腕部轴的回转中心(P点)的动作范围。如图所示DR-4000机器人的动作范围。在实际作业时由于装有焊接工具,其作业范围将发生变化,因而需要进一步对其作业范围进行确认。使用焊接机器人应注意的几个问题24如何导入焊接机器人焊接机器人的应用技术是机器人技术、焊接技术和系统工程技术的融合。国内在引用焊接
14、器人应用工程方面走过了一段曲折的道路,机器人的运行情况不尽人意,分析其原因主要存在以下问题:1机器人及周边设备选型不合理,系统配置不全或不当。2对国内人员的培训没有跟上,没有完全掌握设备的性能和使用方法。3缺乏足够的售前、售中技术支持和良好的售后服务。4机器人操作、维护人员不能相对固定或人员流失。5国外系统不适合国内工艺现状。1明确导入机器人的目的: 1技术工人和熟练工人不足 2使工人从危险作业环境中解脱出来(高温、搬送重物等) 3提高和稳定产品质量 4提高劳动生产率(省人、省力) 5其他(生产管理的要求,提高企业形象等)。 机器人导入目的的不同,机器人的选择、机器人化的实现范围以及经济的评价
15、(投资额)亦不同。 选择焊接工件: 1机器人适于的工件:多品种、中等批量。 2高质量的工件,工件的一致性误差控制在一定范围,因此首先应从技术上易于实现的对象进行,然后分步逐步解决。 确定方案 项目承揽方在对用户原有生产线充分考察的基础上,根据用户提出的要求及工件的特点,提出初步方案(一般两、三种),并与用户充分讨论,确定最终方案。 讨论的内容包括: 1工件的分析,包括:材料、结构、图纸、实物、技术要求分析。 2前道工序的质量确认及分析 3工艺条件及工艺参数初步分析 4工艺路线划分确定 5焊接节拍和生产节拍分析 6机器人选型和系统配置 7周边设备及夹具方案确定 8设备布局与物流 9经济评估 10
16、方案评价(是否符合综合性的省力、自动化的方向,是否符合规格化、标准化的方针,是否适应产品更新换代的要求,安全性可维护性等)工程设计 项目承揽方对确定的方案进行进一步的设计,包括系统的配置选型,周边装置、夹具设计,控制系统的设计,焊接工艺的制定等,在该过程中双方互相勾通,发现问题及时解决。工程实施机器人、周边设备及其配套设施的安装、调试运行,以及组织管理和人员培训。后期维护是致关重要的一个环节,也是用户最关心的,如果后期维护跟不上,将影响整个生产线的运行。目前国内机器人工程使用效果不好,这也是一个主要原因。主要在于:1国外直接供货的设备服务跟不上,不论是售后服务的及时性,服务的质量,解决问题的彻
17、底性都比较差。2国内代理的短期行为,只管自己挣钱,不考虑用户使用的好坏。3培训人员由于语言的障碍,技术难度的障碍,没有真正掌握设备的特性。4培训人员的流失或责任心不强。沈阳自动化研究所做为机器人技术国家研究中心,做为日本OTC公司、安川电机和德国reis公司的技术服务中心,在承担机器人应用工程时,采取如下措施:1建立专门的生产服务负责人,负责到底,直到用户满意。2国外进口设备建立备品、备件库以保证系统维护的及时性。3国内任何地区承诺48小时到现场。4用户人员无限期培训,直到会用为止。5实行有效期保修服务6长期服务 在质量第一,用户至上,精心设计制造,保持一流水平的我所质量方针的指导下,沈阳自动
18、化研究所机器人工程部将竭诚为广大用户服务,与广大用户一起推动我国机器人技术产业化进程。各种焊接机器人的系统构成及周边装置焊接机器人的周边装置主要包括焊接变位机、移动滑台、回转工作台、焊枪清理装置等。1.焊接变位机 焊接变位机是通过倾斜和回转动作,将工件置于便于实施焊接作业位置的机械或机器。焊接变位机与机器人连用可缩短辅助时间,提高劳动生产率,改善焊接质量。焊接变位机在机器人焊接作业中是不可缺少的周边设备,根据实际生产的需要焊接变位机可以有多种形式。从驱动方式来看,有普通直流电机驱动、普通交流电机驱动及可以与机器人同步协调运动的交流伺服驱动。 2.移动滑台 移动滑台也是焊接机器人的一个重要的周边
19、装置,其主要用途是安置机器人或焊丝架,特别是在焊接大型工件时,移动滑台加大了机器人的工作范围,移动滑台的形式主要有以下几种。3.焊枪清理装置焊枪清理装置主要包括剪丝、沾油、清渣以及喷嘴外表面的打磨装置。剪丝装置主要用于用焊丝进行起始点检出的场合,以保证焊丝的干伸长度一定,提高检出的精度;沾油是为了使喷嘴表面的飞溅易于清理;清渣是清除喷嘴内表面的飞溅,以保证保护气体的通畅;喷嘴外表面的打磨装置主要是清除外表面的飞溅。4.自动换枪装置用于不同填充材料的自动焊接。34焊接机器人的主要性能指标 焊接机器人的主要性能指标以日本安川电机公司生产的Motoman-L10为例表示如下: 名称与型号 Motom
20、an-L10 主要用途 弧焊 类别 示教再现型 坐标型式 多关节式 自由度数 5个 抓重 最大10(包括夹钳) 动作范围与速度 运动参数列表如下:表3-1 Motoman-L10运动参数运动自由度动作范围速度整机摆动24090/s上臂俯仰+20-401100mm/s上臂前后40800mm/s手腕弯曲180100/s手腕旋转360150/s 定位方式 选用增量编码器作为位置检测元件 控制方式 重复式数字位置控制方式,可精确控制运动轨迹 重复定位精度 0.2mm; 驱动方式 电伺服 采用交流测速发电机作为伺服电动机的速度检测元件,实现速度反馈,并引进力矩反馈; 驱动源 DC伺服电动机 程序控制和存
21、储方式 采用8位微处理Intel8080用半导体存储器作为主存(盒式磁带补充主存容量之不足)程序步数:1000步指令条数:600条 轮廓尺寸 如图所示图3-3 Motoman-L10外形尺寸与动作范围 重量 本体400 控制部分350 外部同步信号 输入22点 输出21点 电源 AC220/220V(+10%,-15%),50/60HZ1HZ, 三相5KVA2.4焊接机器人的系统构成机器人要完成作业,必须依赖于控制系统与辅助设备的支持和配合。完整的焊接机器人系统一般有如下几部分组成:机器人操作机、变位机、控制器、焊接系统(专用焊接电源、焊枪和焊钳等)、焊接传感器、中央控制计算机和相应的安全设备
22、等,如图所示。根据用途,将工业机器人配置不同的焊接系统,将组成不同的焊接机器人系统,各种不同的焊接机器人系统的主要设备构成如下表所示。(1) 弧焊机器人 由于弧焊工艺早已在诸多行业中得到普及,弧焊机器人在通用机械、金属结构等许多行业中得到广泛运用。弧焊机器人是包括电弧焊附属装置在内的柔性焊接系统,而性能有特殊的要求。在弧焊作业中,焊枪应跟踪工件的焊道运动,并不断填充金属形成焊缝。因此运动过程中的速度稳定性和轨迹精度是两项重要指标。一般情况下,焊接速度约为550/s,轨迹精度约为(0.20.5)。由于焊枪的姿态对焊缝质量有一定的影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大,其一些基本
23、性能要求如下所示: 设定焊接条件(电流、电压、速度等); 摆动功能; 坡口填充功能; 焊接异常功能检测; 焊接传感器(起始点检测、焊道跟踪)的接口功能。(2)点焊机器人 汽车工业是点焊机器人系统一个典型的应用领域,在装配每台汽车车体时,大约60%的焊点是由机器人完成。最初,点焊机器人只用于增强焊作业(往已拼接好的工件上增加焊点),后来为了保证拼接精度,又让机器人完成定位焊作业性能,具体来说有: 安装面积小,工作空间大; 快速完成小节距的多点定位(例如每0.30.4s移动 3050节距后定位); 定位精度高(0.25),以确保焊接质量; 持重大(50100),以便携带内装变压器的焊钳; 内存容量
24、大,示教简单,节省工时; 点焊速度已生产线相匹配,同时按全可靠性好。 33焊接机器人的系统构成图2-1焊接机器人系统原理图 机器人操作机时焊接机器人系统的执行机构,它由驱动器、传动机构、机器人臂、关节以及内部传感器(编码盘)等组成。它的任务是精确的保证末端操作器所要求的位置、姿态和实现其运动。根据定义,工业机器人操作机从结构上应具有三个以上的可自由编程的运动关节,可见其分为主要关节和次要关节两个层次,不同数目和层次关节组合决定了相应的机器人工作空间。由于具有六个旋转关节的铰接开链式机器人操作机从运动学上已被证明能以最小的结构尺寸为代价获取做大的工作空间,并且能以较高的位置精度和最优的路径达到指
25、定位置,因而这种类型的机器人操作机在焊接领域得到广泛地运用。 变位机作为机器人焊接生产线及焊接柔性加工单元的重要组成部分,其作用是将被焊工件旋转(平移)到最佳的焊接位置。在焊接作业前和焊接过程中,变位机通过夹具来装卡和定位被焊工件,对工件的不同要求决定了变位机的负载能力及其运动方式。为了使机器人操作机充分发挥效能,焊接机器人系统通常采用两台变位机,当其中的一台上进行焊接作业时,另一台则完成工件的上装和卸载,从而使整个系统获得最高的费用效能比。机器人控制器是整个机器人系统的神经中枢,它由计算机软件、硬件和一些专用电路构成,其软件包括控制器系统软件、机器人运动学软件、机器人控制软件、机器人自诊断及
26、自保护软件等。控制器负责处理焊接机器人工作过程中的全部信息和控制其全部动作。所有现代机器人的控制器都是基于多处理器,根据操作系统的指令,工业控制计算机通过系统总线实现对不同组件的驱动及协调控制。典型的焊接机器人控制系统结构如图所示。焊接系统是焊接机器人完成作业的核心装备,其主要由焊钳(点焊机器人)、焊枪(弧焊机器人)、焊接控制器及水、电、气等辅助部分组成。焊接控制器是由微处理器及部分外围接口芯片组成的控制系统,它可根据预定的焊接监控程序,完成焊接参数输入、焊接程序控制及焊接系统的故障自诊断,并实现与本地计算机及手控盒的通讯联系。用于弧焊机器人的焊接电源及送丝设备由于参数选择的需要,必须由机器人
27、控制器直接控制,电源在其功率和接通时间上必须与自动过程相符。图3-2焊接机器人控制器系统结构原理图在焊接过程中,尽管机器人操作机、变位机、装卡设备和工具能达到很高的精度,但由于存在被焊工件几何尺寸和位置误差,以及焊接过程中热输入能引起工件的变形,传感器仍使焊接过程中(尤其是焊接大厚工件时)不可缺少的设备。传感器的任务是实现工件坡口的定位、跟踪以及焊缝熔透信息的获取。中央控制计算机在工业机器人向系统化、PC化和网络化的发展过程中发挥着重要的作用。通过串行接口与机器人控制器相连接,中央控制计算机主要用于在统一层次和不同层次的计算机形成网络,同时以传感系统相配合,实现焊接路径和参数的离线编程、焊接专
28、家系统的应用及生产数据的管理。安全设备是焊接机器人系统安全运行的重要保障,其主要包括驱动系统过热自断电保护、动作超限位自断电保护、超速自断电保护、机器人系统工作空间干涉自断电保护及人工急停断电保护等等,他们起到防止机器人伤人或周边设备的作用。在机器人的工作部还装有各类触觉和接近传感器,可以使机器人在过分接近工件或发生碰撞时停止工作。 3.焊接机器人的示教编程机器人是怎样运动的?焊接机器人是如何工作的?操作机器人进行焊接需要掌握哪些焊接知识呢?通过本章的学习,你基本上可以使用机器人来进行焊接了。 用机器人代替人进行作业时,必须预先对机器人发出指令,规定机器人应该完成的动作和作业的具体内容,这个指
29、示过程称之为对机器人的示教(teaching),或者称之为对机器人的编程(programming)。对机器人的示教内容通常存储在机器人的控制装置内,通过存储内容的再现(playback),机器人就能实现人们所要求的动作和要求人们赋予的作业内容。机器人的示教方式有多种形式,但目前使用最多的仍然是示教再现方式。虽然示教再现方式机器人有占用机时、效率低等诸多缺点,人们试图在传感器的基础上使机器人智能化,目的是取消示教,但在复杂的生产现场和作业可靠性等方面到处碰壁,难以实现,因此目前人们仍然脱离不了示教再现方式的状态。 示教内容主要由两部分组成,一是机器人运动轨迹的示教,二是机器人作业条件的示教。机器
30、人运动轨迹的示教主要是对为了完成某一作业,焊丝端部所要运动的轨迹,包括运动类型和运动速度的示教。机器人作业条件的示教主要是为了获得好的焊接质量,对焊接条件进行示教,包括被焊金属的材质、板厚、对应焊缝形状的焊枪姿势、焊接参数、焊接电源的控制方法等。 目前机器人语言还不是通用型语言,各机器人生产厂都有自己的机器人语言,给用户使用带来了很大的不便,但各种机器人所具有的功能却基本相同,因此只要熟悉和掌握了一种机器人的示教方法,对于其它种类的机器人就会很容易学会。3.1机器人的运动轴及坐标系 机器人是由运动轴和连杆组成的,而其运动方式是在不同的坐标系下进行的,为了掌握机器人的示教方法,应首先了解机器人的
31、坐标系及各运动轴在不同坐标系下的运动。3.1.1机器人各轴的名称机器人系统中,除了机器人本身外还包括一些周边设备,如变位机、移动滑台等。将运动轴按其功能划分为:机器人本体轴、基座轴和工作台轴。基座轴和工作台轴统称为外部轴,如图2.11所示。机器人本体轴属于机器人本身,基座轴是使机器人移动的轴的总称,主要为移动滑台。工作台轴是除机器人轴、基座轴以外的轴的总称,如变位机、翻转机等。图2.11 机器人各轴的名称3.1.2坐标系分类及各轴的运动 在大部分商用机器人系统中,坐标系一般分五类:关节坐标系、绝对坐标系(直角坐标系)、工具坐标系、圆柱坐标系和用户坐标系。机器人的运动是根据不同的作业轨迹的要求,
32、在这五种坐标系下的运动。3.1.2.1关节坐标系机器人是有多个运动关节组成的,在关节坐标系下的运动,就是机器人各个关节的独立运动, 如图2.12所示。对大范围运动,且不要求机器人末端姿态的,则选择关节坐标系。对外部轴来说,只有关节坐标系可选。在关节坐标系下,每个轴单独运动,关节运动方式如下:轴每位对应键运动方式主运动轴S轴X+ 1 X-S轴左右转动L轴Y+ 2 Y-L轴前后转动U轴Z+ 3 Z-U上下转动腕运动轴R轴RX+ 4 RX-R轴左右转动B轴RY+ 5 RY-B轴前后转动T轴RZ+ 6 RZ-T轴上下转动图2.12 关节坐标系下各个轴的运动3.1.2.3绝对坐标系绝对坐标系的原点定义为
33、机器人的安装面和第一转动轴的交点。X轴向前,Z轴向上,Y轴按右手规则定义。在绝对坐标系(直角坐标系)中,机器人的运动指机器人末端点的运动,在未装工具时,机器人的末端点指六轴法兰盘的中心点,在安装工具后,机器人的末端点指的是焊钳开口的中心点或焊枪的枪尖。在绝对坐标系下,机器人末端轨迹沿定义的X、Y、Z方向运动,其运动方式如图2.13所示。轴每位对应键运动方式主运动轴S轴X+ 1 X-沿X轴方向运动L轴Y+ 2 Y-沿Y轴方向运动U轴Z+ 3 Z-沿Z轴方向运动腕运动轴R轴RX+ 4 RX-末端点位置不变,姿态分别绕X、Y、Z轴转动B轴RY+ 5 RY-T轴RZ+ 6 RZ-图2.13 绝对坐标系
34、及各轴的运动3.1.2.3圆柱坐标系圆柱坐标系的原点与绝对坐标系的相同,Z轴向上,轴方向为本体S轴转动方向,r轴平行于本体L轴, 如图2.14所示。轴每位对应键运动方式主运动轴轴X+ 1 X-绕S轴转动r轴Y+ 2 Y-垂直Z轴运动U轴Z+ 3 Z-沿Z轴方向运动腕运动轴R轴RX+ 4 RX-末端点位置不变,姿态分别绕X、Y、Z轴转动B轴RY+ 5 RY-T轴RZ+ 6 RZ-图2.14 圆柱坐标系及各轴的运动3.1.2.4工具坐标系工具坐标系定义在工具尖,并且假定工具的有效方向为Z轴,X轴垂直于工具平面,Y轴由右手规则产生,如图2.15所示。在工具坐标系中,机器人末端轨迹沿工具坐标的X、Y、
35、Z轴方向运动,机器人的运动方式如下:轴每位对应键运动方式主运动轴六轴联动沿X轴方向运动沿Y轴方向运动沿Z轴方向运动腕运动轴末端点位置不变,姿态分别绕X、Y、Z轴转动图2.15 工具坐标系及各轴的运动3.1.2.5用户坐标系用户坐标系是用户根据工作方便的需要,自行定义的坐标系,用户可根据需要定义多个坐标系, 如图2.16所示。在用户坐标系下,机器人末端轨迹沿用户自己定义的坐标轴方向运动,其运动方式如下:轴每位对应键运动方式主运动轴六轴联动沿用户定义的X轴方向运动沿用户定义的Y轴方向运动沿用户定义的Z轴方向运动腕运动轴末端点位置不变,姿态分别绕X、Y、Z轴转动图2.16 用户坐标系及各轴的运动3.
36、1.2.6TCP(工具控制点)固定功能除了关节坐标系外,在其它坐标系下都有TCP固定功能,即在工具控制点位置保持不变的情况下,只改变工具的方向(姿态)如图2.17所示。在TCP固定功能下各轴的运动如下:轴每位对应键运动方式主运动轴X+ 1 X-TCP平移运动方向取决于坐标系Y+ 2 Y-Z+ 3 Z-腕运动轴RX+ 4 RX-末端点位置不变,姿态分别绕X、Y、Z轴转动RY+ 5 RY-RZ+ 6 RZ-在不同坐标系下腕运动轴的转动方向是不同的。图2.18、2.19、2.20分别为直角/圆柱坐标系、工具坐标系和用户坐标系下的X、Y、Z轴的方向。图2.17 TCP固定功能示意图图2.18 笛卡儿/
37、圆柱坐标系下的X、Y、Z轴图2.19 工具坐标系下的X、Y、Z轴图2.20 用户坐标系下的X、Y、Z轴3.1.3机器人的运动类型和速度运动类型决定机器人再现时各步之间的运动路径,再现速度是机器人末端点的运动速率,通常每一步的位置数据、运动类型和速度记录在一起。3.1.3.1点位运动类型点位运动类型通常用于机器人向下一步运动不需要特定路径的场合。为了安全,示教第一步一般用点位运动类型。点位运动类型的速度用最大速度的百分比来表示。3.1.3.2直线运动类型示教直线运动类型时,机器人沿直线运动到该示教点。直线运动类型一般用于作业路径的示教,或为防止与周边设备的干涉,在周边设备内部也采用祖先运动类型。
38、直线运动类型的速度一般表示为cm/min或mm/sec。3.1.3.3圆弧运动类型单个圆弧运动类型的示教一般需要三点,如图2.21所示的P1、P2、P3点。当需要连续多个圆弧运动时,两段圆弧运动必须由一个关节或直线运动点隔开,且第一段圆弧的终点和第二段圆弧的起点重合,如图2.22所示的P4点既为重合点。图2.21 单个圆弧运动的示教图2.22 连续多个圆弧运动的示教3.6焊接机器人的示教与编程 用机器人代替人进行作业时,必须预先对机器人发出指令,规定机器人应该完成的动作和作业的具体内容,这个指示过程称之为对机器人的示教(teaching),或者称之为对机器人的编程(programming)。对
39、机器人的示教内容通常存储在机器人的控制装置内,通过存储内容的再现(playback),机器人就能实现人们所要求的动作和要求人们赋予的作业内容。对机器人进行示教分直接示教和间接示教两种主要方法,图2.23对各种示教方法进行了归纳,图2.24为各种示教方法的形象示意图。图2.23 工业机器人的示教方法图2.24 机器人示教方法的形象示意图 由于示教再现方式机器人有占用机时、效率低等诸多缺点,人们试图在传感器的基础上使机器人智能化,目的是取消示教,但在复杂的生产现场和作业可靠性等方面到处碰壁,难以实现,因此目前人们仍然脱离不了示教再现方式的状态。目前机器人语言还不是通用型语言,各机器人生产厂都有自己
40、的机器人语言,给用户使用带来了很大的不便,但各种机器人所具有的功能却基本相同,因此只要熟悉和掌握了一种机器人的示教方法,对于其它种类的机器人就会很容易学会。下面以日本DAIHEN公司生产的OTC机器人为例,来说明焊接机器人的示教过程。3.6.1示教内容图2.25表示机器人控制器和用于示教的示教盒。示教盒由液晶屏幕和进行各种操作、输入条件等按钮组成。图2.25机器人的控制器及示教盒示教内容主要由两部分组成,一是机器人运动轨迹的示教,二是机器人作业条件的示教。机器人运动轨迹的示教主要是对为了完成某一作业,焊丝端部所要运动的轨迹,包括运动类型和运动速度的示教。机器人作业条件的示教主要是为了获得好的焊
41、接质量,对焊接条件进行示教,包括被焊金属的材质、板厚、对应焊缝形状的焊枪姿势、焊接参数、焊接电源的控制方法等。图2.26表示机器人的语言,在示教方式中,利用轴操作按钮实际地引导机器人,进行位置的登录工作,输入机器人的位置信息、焊接条件等,利用机器人语言编制程序。图2.26 机器人语言3.6.2示教举例下面以一个简单的例子来描述一下弧焊作业的基本示教过程。图2.27 焊接操作举例如图2.27所示,焊接从位置3开始到位置4为直线焊缝,位置4到位置5再到位置6为圆弧焊缝,位置6焊接结束。示教过程如下:(1)输入文件名(2)操作机器人到位置1,示教定位指令“P”和运动速度。(3)操作机器人到位置2,示
42、教定位指令(或关节运动指令)“P”和运动速度。(4)操作机器人到位置3,示教定位指令(或关节运动指令)“P”和运动速度,输入焊接开始指令“AS”。焊接条件包括焊接电流、焊接电压和焊接速度。(5)操作机器人到位置4,由于直线插补指令已经自动选择,只要用数字按钮选择块操作时的速度即可。(6)操作机器人到位置5,这个位置是圆弧的中间点,示教圆弧插补指令“C”和运动速度。(7)操作机器人到位置6,这个位置是圆弧的结束点,示教圆弧插补指令“C”和运动速度,输入焊接结束指令“AE”。焊接结束条件包括焊接电流、电压、填弧坑时间和滞后停气时间。(8)操作机器人到位置7,示教定位指令(或关节运动指令)“P”和运
43、动速度。(9)操作机器人到位置8,示教定位指令(或关节运动指令)“P”和运动速度。(10)示教结束。按RESET键。3.6.3机器人示教存在的问题为了使机器人实际完成作业,除了在一定程度上了解作业技术外,还必须熟练掌握机器人。3.6.3.1动作示教中存在的问题在示教方式中用示教盒操作机器人,把焊枪引导到所希望的位置上去,但存在以下各点使示教操作比较困难。1. 必须经常考虑坐标系进行示教,有时需要切换多个坐标系,这就难以操纵焊枪向既定的方向移动。2.为了调整机器人靠近工件的接近程度,必须切换不同的动作速度。3.机器人的动作范围是有限制的,为了防止碰撞工件,需要一定的操作技巧。4.机器人轴的运动方
44、向与坐标系是一一对应的,同时操纵两根轴的运动方向是很困难的。总之不是随意就能对机器人进行示教的,这就降低了示教效率,总担心会碰到工件,使人操作起来感到紧张。此外,不同的生产工厂其操作键的配置也是不同的,给示教者容易带来混乱。3.6.3.2条件示教的问题点示教者必须具有一定水平的焊接作业技巧,同时还要掌握用机器人进行焊接的特点。例如必须掌握适用于工件的焊接速度、焊接电流、焊接电压及焊枪姿态等,还能从焊接结果反过来进行条件的修订。这些用机器人进行焊接的技巧是焊接技术人员经过长期的实践积累下来的,如何对这些技术进行继承和共同使用是一个难题。3.6.3.3其他的问题点示教盒的问题在于键操作是个复杂的过程,很难一下子抓住操作系统的整体情况,摸索输入情况和画面显示内容需要一定时间,有时仅仅是输入数据这一项就需要操作复杂的按钮。此外,不熟悉计算机语言的