《(完整版)高二数学选修2-1测试题.pdf》由会员分享,可在线阅读,更多相关《(完整版)高二数学选修2-1测试题.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、试卷第 1 页,总 4 页姓名:_ 班级:_ 一、选择题1“1x”是“2320 xx”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2若p q是假命题,则()A.p是真命题,q是假命题B.p、q均为假命题C.p、q至少有一个是假命题D.p、q至少有一个是真命题31F,2F是距离为6 的两定点,动点M满足1MF+2MF=6,则 M点的轨迹是()A.椭圆 B.直线 C.线段 D.圆4 双曲线221169xy的渐近线方程为()A.xy916 B.xy169 C.xy43 D.xy345 中心在原点的双曲线,一个焦点为,一个焦点到最近顶点的距离是,则双曲线的方程是()A
2、B CD6已知正方形ABCD的顶点,A B为椭圆的焦点,顶点,C D在椭圆上,则此椭圆的离心率为()A21 B22 C21 D227椭圆14222ayx与双曲线1222yax有相同的焦点,则a的值为()A1 B2C2 D 38与双曲线1422xy有共同的渐近线,且过点(2,2)的双曲线标准方程为()(A)112322xy(B)112322yx(C)18222xy(D)18222yx9已知 A(1,2,6),B(1,2,6)O为坐标原点,则向量,OAOBuuu ruu u r与的夹角是()A0 B2CD32(03)F,312212xy2212yx2212yx2212xy试卷第 2 页,总 4 页
3、10与向量(1,3,2)ar平行的一个向量的坐标是()A(31,1,1)B(1,3,2)C (21,23,1)D(2,3,22)11已知圆C 与直线0yx及04yx都相切,圆心在直线0yx上,则圆 C的方程为()A.22(1)(1)2xyB.22(1)(1)2xyC.22(1)(1)2xyD.22(1)(1)2xy12若直线myx与圆myx22相切,则m的值为()A0 B1 C2 D0或2二、填空题13直线yx被圆22(2)4xy截得的弦长为_.14已知椭圆xykkkyx12)0(3222的一个焦点与抛物线的焦点重合,则该椭圆的离心率是15已知方程12322kykx表示椭圆,则k的取值范围为
4、_16在正方体1111ABCDA BC D 中,E为11AB 的中点,则异面直线1D E 和1BC 间的距离三、解答题17求过点(1,6)与圆 x2+y2+6x4y+9=0 相切的直线方程18求渐近线方程为xy43,且过点)3,32(A的双曲线的标准方程及离心率。文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码
5、:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1
6、 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2
7、ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档
8、编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10
9、R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E
10、2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6文档编码:CE3P6G4T10R1 HK7Q6X6Q1E2 ZD2S1Q7C8C6
11、试卷第 3 页,总 4 页19求与 x 轴相切,圆心C在直线 3xy0 上,且截直线xy0 得的弦长为27 的圆的方程20已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M(3,m)到焦点的距离等于 5,求抛物线的方程和m的值21已知椭圆)0(1:2222babyaxC的焦距为62,椭圆C上任意一点到椭圆两个焦点的距离之和为6()求椭圆C的方程;()设直线l2:kxy与椭圆C交于BA,两点,点P(0,1),且PA=PB,求直线l的方程文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R
12、9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5
13、T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10
14、D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H
15、4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9
16、I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z
17、10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J
18、1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4试卷第 4 页,总 4 页22如图,在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PDDC,,E F分别是,AB PB的中点(1)求证:EFCD;(2)在平面PAD内求一点G,使GF平面PCB,并证明你的结论;(3)求DB与平面DEF所成角的正弦值AEBPCDF文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 Z
19、D1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编
20、码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6
21、 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8
22、 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文
23、档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5
24、H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8
25、F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4答案第 1 页,总 7 页参考答案1B【解析】试题分析:2320(1)(2)0 xxxx,则1x且2x;反之,1x且2x时,2320 xx,故选 B.考点:充要条件的判断.2C【解析】试题分析:当p、q都是真命题p q是真命题,其逆否命题为:p q是假命题p、q至少有一个是假命题,可得C正确.考点:命题真假的判断.3C【解析】解题分析:因为1F,2F是距离为6,动点 M满足1MF+2MF=6,所以 M点的
26、轨迹是线段12F F。故选 C。考点:主要考查椭圆的定义。点评:学习中应熟读定义,关注细节。4C【解析】因为双曲线221169xy,a=4,b=3,c=5,则其渐近线方程为xy43,选 C.5A【解析】试题分析:由焦点为,所以,双曲线的焦点在y 轴上,且c3,焦点到最近顶点的距离是,所以,a3()1,所以,22bca2,所以,双曲线方程为:.本题容易错选B,没看清楚焦点的位置,注意区分.考点:双曲线的标准方程及其性质.6A【解析】试题分析:设正方形ABCD的边长为 1,则根据题意知,121,2cc212,a(03)F,31312212xy文档编码:CP9I5T8Z5H6 HM1Z10D8M8F
27、8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4
28、文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z
29、5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M
30、8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9
31、Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T
32、8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D
33、8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4答案第 2 页,总 7 页122a,所以椭圆的离心率为11221.21212考点:本小题主要考查椭圆中基本量的运算和椭圆中离心率的求法,考查学生的运算求解能力.点评:求椭圆的离心率关键是求出ca,而不必分别求出,.a c7A【解析】试题分析:因为椭圆14222ayx与双曲线1222yax有相同的焦点,所以0a,且椭圆的
34、焦点应该在x轴上,所以242,2,1.aaaa或因为0a,所以1.a考点:本小题主要考查椭圆与双曲线的标准方程及其应用.点评:椭圆中222cab,而在双曲线中222.cab8B【解析】试题分析:设所求的双曲线方程为224yx,因为过点(2,2),代入可得3,所以所求双曲线方程为112322yx.考点:本小题主要考查双曲线标准方程的求解,考查学生的运算求解能力.点评:与双曲线1422xy有共同的渐近线的方程设为224yx是简化运算的关键.9C【解析】试题分析:应用向量的夹角公式|cosbaba=1所以量,OAOBuuu ruuu r与的夹角是,故选 C。考点:本题主要考查向量的数量积及向量的坐标
35、运算.点评:较好地考查考生综合应用知识解题的能力以及运算能力,属于基本题型。10 C;【解析】试题分析:向量的共线(平行)问题,可利用空间向量共线定理写成数乘的形式即babab/,0也可直接运用坐标运算。经计算选C。文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F
36、8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4
37、文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z
38、5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M
39、8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9
40、Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T
41、8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4答案第 3 页,总 7 页考点:本题主要考查向量
42、的共线及向量的坐标运算.点评:有不同解法,较好地考查考生综合应用知识解题的能力。11 B【解析】试题分析:因圆心在直线0yx上,而点(1,1)和点(-1,-1)不在直线上,故C、D错;又直线0yx及04yx平行,且都与圆相切,故圆心在第四象限,故 A 错,选 B.或用直接法求解亦可.考点:1.圆的标准方程;2.直线与圆的位置关系.12 C【解析】试题分析:根据题意,由于直线myx与圆myx22相切,则圆心(0,0)到直线x+y=m的距离为|m|=m2,则可知得到参数m 的值为 2,故答案为C.考点:直线与圆的位置关系点评:主要是考查了直线与圆的位置关系的运用,属于基础题。132 2【解析】试题
43、分析:由弦心距、半径、弦长的一半构成的直角三角形,应用勾股定理得,直线yx被圆22(2)4xy截得的弦长为22|2|2 2()2 22。考点:直线与圆的位置关系点评:简单题,研究直线与圆的位置关系问题,要注意利用数形结合思想,充分借助于“特征直角三角形”,应用勾股定理。1432e【解析】试题分析:抛物线的焦点为(3,0)F,椭圆的方程为:22133xyk3394kk,所以离心率3322 3e.考点:1、椭圆与抛物线的焦点;2、圆的离心率.1511(3,)(,2)22U【解析】文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM
44、1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD
45、1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码
46、:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6
47、HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8
48、ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档
49、编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H
50、6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4文档编码:CP9I5T8Z5H6 HM1Z10D8M8F8 ZD1J1H4R9Q4答案第 4 页,总 7 页试题分析:方程12322kykx表示椭圆,需要满足302032kkkk,解得k的取值范围为11(3,)(,2)22U.考点:本小题主要考查椭圆的标准方程,考查学生的推理能力.点评:解决本小题时,不要忘记32kk,否则就表示圆了.162 63【解析】试题分析:设正方体棱长为2,以1D 为原点,建立如图所示的空间直角坐标系,则1(2,1,0)D Euu uu