(完整word版)高二数学第一学期期末试卷(文科必修2+选修1-1)修改版(word文档良心出品).pdf

上传人:Q****o 文档编号:55057225 上传时间:2022-10-29 格式:PDF 页数:7 大小:223.21KB
返回 下载 相关 举报
(完整word版)高二数学第一学期期末试卷(文科必修2+选修1-1)修改版(word文档良心出品).pdf_第1页
第1页 / 共7页
(完整word版)高二数学第一学期期末试卷(文科必修2+选修1-1)修改版(word文档良心出品).pdf_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《(完整word版)高二数学第一学期期末试卷(文科必修2+选修1-1)修改版(word文档良心出品).pdf》由会员分享,可在线阅读,更多相关《(完整word版)高二数学第一学期期末试卷(文科必修2+选修1-1)修改版(word文档良心出品).pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 高二数学第一学期期末质量检测试卷(湘教必修3+选修 1-1)一、选择题:(共 10 小题,每小题 5 分,共计 50 分)1.已知过点4,2mBmA的直线与012yx垂直,则m的值为()A 0 B2 C-8 D10 2.12222byax上顶点0,0,021cFcFbC直角三角形,则离心率e=()A.21 B.22 C.1 D.23.1 命题“同位角相等,两直线平行”的逆否命题为:“两直线不平行,同位角不相等”.2“1x”是“2430 xx”的充分必要条件;3 若pq为假命题,则p、q均为假命题.4 对于命题p:0 xR,200220 xx,则p:xR,222 0 xx.上面四个命题中正确

2、是()A.12 B.23 C.14 D.344.两平行线0,03:,01:21ccayxlyxl的距离为2,3ac=()A.-2 B.-6 C.2 D.05.一个正三棱柱,它的三视图及其尺寸如下(单位cm),则该几何体的表面积为()A.4(9+23)cm2 B.)3824(cm2C.314 cm2 D.318 cm6.设圆的方程为22134xy,过点1,1作圆的切线,则切线方程为()A1x B1x或1y C10y D1xy或0 xy7.过1,1P的直线与圆93222yx交于BA,两点,则AB的最小值为()A.32 B.4 C.52 D.5 8.如图为正方体平面展开图:(1)CN与 AF平行;(

3、2)CN与BE是异面直线;(3)CN与BM成60;(4)DE与BM垂直.以上四个命题中正确的是()A(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)正视图32侧视图俯视图A B C D E F N M 2 9.已知mn,,是直线,是平面,给出下列命题:若,m,nm,则n或n若,m,n,则mn若/,/,nmnm,则若m,nm/且n,n,则/n且/n其中正确的命题是()A.B.C.D.10.0,3,1003:22ByxC,P为圆上动点,BP的垂直平分线交CP于M点,则M点的轨迹方程是()A26yx.B.2212516xyC.2212516xy D.2225xy二填空题:(共 5 小题,

4、每小题5 分,共 25 分)11.在空间直角坐标系中,xA,2,1,0,4,1B,且3AB,则x=.12.已知圆21:22yxC,过点0,1P的直线0,kl交圆C于BA,两点,若0CBCA,则直线l的方程为 .13.椭圆0,1:2222babyaxC的两个焦点21,FF,P为椭圆C上一点,且212PFPF,则此椭圆C的离心率的取值范围为 .14.正方体1111DCBAABCD的棱长为1,过A点做面BDA1的垂线,垂足为点H点H是BDA1的垂心;11DCBAH面;AH的延长线经过1C点;AH和1BB的所成角为45;H点到面1111DCBA的距离为43则下列命题中,正确的命题有 .15.若实数ba

5、,满足0,0 ba且0ab,则称ba,互补,记bababa22,,那么0,ba是ba,互补的 .(填神马条件)三解答题:(共 6 小题,前三小题,每小题13 分,后三小题,每小题12 分,共 75 分)16.已知关于yx,的方程042:22myxyxC.(1)当m为何值时,方程C表示圆。(2)若圆C与直线042:yxl相交于NM,两点,且54MN,求m的值。文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I

6、1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3

7、E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J

8、4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E

9、5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8

10、C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D

11、4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P1

12、0E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A83 17.如图,在四棱锥ABCDP中,底面ABCD是矩形已知60,22,2,2,3PABPDPAADABM是PD的中点.()证明/PB平面MAC();证明平面PAB平面ABCD;()求四棱锥ABCDP的体积18.21,FF分别为椭圆0,1:2222babyaxC的左、右两个焦点,BA,为两个顶点,已知椭圆C上的点)23,1(到21,FF两点的距离之和为4.()求椭圆C的方程;()过椭圆C的焦点2F作AB的平行线交椭圆于QP,两点,求PQF1的面积.19.如图 1,在A B CRT中,90C,ED,分

13、别为ABAC,的中点,点F为线段CD上的一点,将ADE沿DE折起到DEA1的位置,使CDFA1A1FCD,如图 2。(I)求证:/DE平面CBA1;(II)求证:BEFA1;(III)线段BA1上是否存在点Q,使CA1平面DEQ?说明理由。文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7

14、 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7

15、ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文

16、档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2

17、P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B

18、7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A

19、8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A84 20.圆22:(1)

20、1Mxy,圆22:(1)9Nxy,动圆P与圆M外切且与圆N内切,圆心P的轨迹为曲线C.()求C的方程;()l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB.21.已知圆C的方程为22(4)4xy,点O是坐标原点.直线:lykx与圆C交于,M N两点.()求k的取值范围;()设(,)Q m n是线段MN上的点,且222211|OQOMON.请将n表示为m的函数.文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7

21、HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 Z

22、I7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档

23、编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P

24、7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7

25、 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8

26、文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y

27、2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A85 高二数学第一学期期末质量检测试卷(湘教必修3+选修 1-1)参考答案 BBCBA BBDBB 11.1 12.013yx 13.1,31 14.15.充要条件16.解:(1)方程 C可化为myx5)2()1(221 分显然5,05mm即时时方程 C表示圆。(2)由(1)知,圆心 C(1,2),半径mr5则圆心 C(1,2)到直线l:x+2y-4=0的距离为5121422122d5221,54MNMN则,有222)21(MNdr22125()(),55m得

28、4m17.解()证明连接在PBD中,OM 是中位线 PB OM PB平面 MAC,OM 平面 MAC,PB 平面 MAC,3 分()由题设22,2 PDPA可得222PDADPA于是PAAD.在矩形ABCD中,ABAD.又AABPA,所以AD平面PAB AD平面 ABCD 平面 PAB 平面 ABCD 分()解:过 点P 做ABPH于H,平 面PAB平 面A B C DPABABCDAB平面平面PH平面ABCD,-8分在RtPHA中 PH=PAsin600=3232113232 333pABCDVABADPH-10分18:解()由题设知:2a=4,即a=2 将点)23,1(代入椭圆方程得1)(

29、2122232b,解得b2=3 c2=a2b2=4 3=1 ,故椭圆方程为13422yx-3分()由()知)3,0(),0,2(BA,23ABPQkk,PQ所在直线方程为)1(23xy-5分文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8

30、文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y

31、2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4

32、B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1

33、A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E

34、5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4

35、P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A86 由134)1(2322yxxy得093482yy-7分设P(x1,y1

36、),Q(x2,y2),则89,232121yyyy-8分221894434)(2122121yyyyyy-9分.2212212212121211yyFFSPQF-10分19.解:(1)因为 D,E 分别为 AC,AB的中点,所以DE BC.又因为 DE平面 A1CB,所以 DE平面 A1CB.(2)由已知得AC BC且 DEBC,所以 DE AC.所以 DE A1D,DECD.所以 DE平面 A1DC.而 A1F平面 A1DC,所以 DE A1F.又因为 A1FCD,所以 A1F平面 BCDE.所以 A1FBE(3)线段 A1B上存在点Q,使 A1C平面 DEQ.理由如下:如图,分别取 A1C

37、,A1B的中点 P,Q,则 PQ BC.又因为 DE BC,所以 DE PQ.所以平面DEQ 即为平面DEP.由(2)知 DE 平面 A1DC,所以 DE A1C.又因为 P是等腰三角形DA1C底边 A1C 的中点,所以 A1CDP,所以 A1C平面 DEP,从而 A1C平面 DEQ.故线段 A1B上存在点Q,使得 A1C平面 DEQ.20.解:由已知得圆M的圆心为M(-1,0),半径11r;圆 N的圆心为N(1,0),半径23r.设知 P的圆心为P(x,y),半径为 R.(I)因为圆 P与圆 M外切并且与圆N内切,所以1212()()4PMPNRrrRrr.有椭圆的定义可知,曲线 C是以 M

38、,N为左.右焦点,长半轴长为2,短半轴长为3的椭圆(左定点除外),其方程为221(2)43xyx.(II)对于曲线C 上任意一点(,)P x y,由于222PMPNR,所以R2,当且仅当圆P 的圆心为(2,0)时,R=2,所以当圆P的半径最长时,其方程为22(2)4xy;若 l 的倾斜角为90,则 l 与 y 轴重合,可得2 3AB.若 l 的倾斜角不为90,则1rR知 l 不平行于x 轴,设 l 与 x 轴的交点为Q,则1QPRQMr,可求得 Q(-4,0),所以可设l:y=k(x+4).由 l 于圆 M相切得2311kk,解得 k=24.当 k=24时,将 y=24x+2代入22143xy

39、,并整理得27880 xx,文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A

40、8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5

41、Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P

42、4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I

43、1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3

44、E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J

45、4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A87 解得21,22146 218.=1+k77xABxx所以.当 k=218=47AB时,有图形的对称性可知.综上,=2 3AB或187AB.21.解:()将xky代入22(4)4xy得 则0128)1(22xkxk,(*)由012)1

46、(4)8(22kk得32k.所以k的取值范围是),3()3,()因为M、N在直线l上,可设点M、N的坐标分别为),(11kxx,),(22kxx,则2122)1(xkOM,2222)1(xkON,又22222)1(mknmOQ,由222112ONOMOQ得,22221222)1(1)1(1)1(2xkxkmk,所以222121221222122)(112xxxxxxxxm由(*)知22118kkxx,221112kxx,所以353622km,因为点Q在直线l上,所以mnk,代入353622km可得363522mn,由353622km及32k得302m,即)3,0()0,3(m.依题意,点Q在圆

47、C内,则0n,所以518015533622mmn,于是,n与m的函数关系为5180152mn()3,0()0,3(m)文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E

48、5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8

49、C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D

50、4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P10E5I1A8文档编码:CR8C3E5Y2P7 HM8D4J4P4B7 ZI7P1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁