《(完整word版)八年级上册数学全等三角形知识点总结,推荐文档.pdf》由会员分享,可在线阅读,更多相关《(完整word版)八年级上册数学全等三角形知识点总结,推荐文档.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级上册数学全等三角形知识点总结定义能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中相似比为1:1 的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。由此,可以得出:全等三角形的对应边相等,对应角相等。(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边;(4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角;表示:全等用“”表示,读作“全等于”。判定公理 1、三组对应边分别
2、相等的两个三角形全等(简称 SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。2、有两边及其夹角对应相等的两个三角形全等(SAS精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 5 页 -或“边角边”)。3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。由 3 可推到 4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL 或“斜边,直角边”)所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。注意:在全等的判定中,没有 AAA角角角和 SSA(特例:直角三
3、角形为HL,属于 SSA)边边角,这两种情况都不能唯一确定三角形的形状。A 是英文角的缩写(angle),S是英文边的缩写(side)。H 是英文斜边的缩写(Hypotenuse),L 是英文直角边的缩写(leg)。6.三条中线(或高、角分线)分别对应相等的两个三角形全等。性质三角形全等的条件:1、全等三角形的对应角相等。2、全等三角形的对应边相等 3、全等三角形的对应顶点相等。精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 5 页 -文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S
4、6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7
5、K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码
6、:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7
7、P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2
8、 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4
9、T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S
10、1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1 4、全等三角形的对应边上的高对应相等。5、全等三角形的对应角平分线相等。6、全等三角形的对应中线相等。7、全等三角形面积相等。8、全等三角形周长相等。9、全等三角形可以完全重合。三角形全等的方法:1、三边对应相等的两个三角形全等。(SSS)2、两边和它们的夹角对应相等的两个三角形全等。(SAS)3、两角和它们的夹边对
11、应相等的两个三角形全等。(ASA)4、有两角及其一角的对边对应相等的两个三角形全等(AAS)5、斜边和一条直角边对应相等的两个直角三角形全等。(HL)推论要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:S.S.S.(Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 5 页 -文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S
12、1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S
13、6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7
14、K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码
15、:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7
16、P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2
17、 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4
18、T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1等。S.A.S.(Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。A.S.A.(Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就
19、是全等。A.A.S.(Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。R.H.S./H.L.(Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:A.A.A.(Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相
20、似三角形。A.S.S.(Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页,共 5 页 -文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:C
21、S3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6
22、O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 H
23、I5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T1
24、0E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1
25、ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I
26、10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1
27、文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1三角形的话,应以R.H.S.来判定。编辑本段运用 1、性质中三角形全等是条件,结论是对应角、对应边相等。而全等的判定却刚好相反。2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。4、用在实际中,一般我们用全等三角形测相等的距离。以及相等的角,可以用于工业和军事。5、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。这篇
28、八年级上册数学全等三角形知识点总结是精品小编精心为同学们准备的,祝大家学习愉快!精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 5 页 -文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2
29、HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T
30、10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1
31、 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6
32、I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K
33、1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1文档编码:CS3M7P6O1P2 HI5V4T10E7S1 ZO3S6I10C7K1