《(完整word版)2019-2020年高一数学上3.4《函数的单调性》学案沪教版.pdf》由会员分享,可在线阅读,更多相关《(完整word版)2019-2020年高一数学上3.4《函数的单调性》学案沪教版.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2019-2020 年高一数学上 3.4 函数的单调性学案沪教版【教学目的】1 使学生理解增函数、减函数的概念,掌握判断某些函数增减性的方法;2 培养学生利用数学概念进行判断推理的能力和数形结合,辩证思维的能力;【基本知识】1、定义:对于给定区间上的函数f(x)及属于这个区间上的任意 两个自变量x1、x2,当x1x2时,如果有f(x1)f(x2),则称 f(x)在这个区间上是函数,这个区间就叫做函数f(x)的区间;如果有 f(x1)f(x2),则称 f(x)在这个区间上是函数,这个区间就叫做函数f(x)的区间;说明1。单调区间是定义域的子集;2。若函数 f(x)在区间 D上是增函数,则图象在D
2、上的部分从左到右呈趋势若函数 f(x)在区间 D上是减函数,则图象在D上的部分从左到右呈趋势3。单调区间一般不能并2、判断单调性的方法:定义;导数;复合函数单调性:同增则增,异增则减;图象3、常用结论:两个增(减)函数的和为_;一个增(减)函数与一个减(增)函数的差是_;奇函数在对称的两个区间上有_的单调性;偶函数在对称的两个区间上有_的单调性;互为反函数的两个函数在各自定义域上有_的单调性;【课前预习】1 下列函数中,在区间(,0)上是增函数的是 ()A、B、g(x)=ax+3(a0)C、D、2 函数的单调递增区间是3 函数 f(x)logax(0a1)的单调增区间是4 函数)23(log)
3、(221xxxf的减区间是 _ 5 函数 f(x)x3+ax 有三个单调区间,则实数a 的取值范围是【例题讲解】例 1:若函数在区间上是减函数,则实数的取值范围是_.精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 6 页 -【变式 1】3211()(1)132f xxaxax在区间(1,4)内为减函数,在区间(6,)为增函数,求实数a 的取值范围;【变式 2】已知数列 an中,且随着n 的增大而增大,则实数a 的取值范围是例 2、判断并证明函数的单调性【变式 1】判断函数)1,0(11log)(aaxxxfa的单调性【变式 2】已知函数,是否存在实数x,使关于 x 的不等式成立例 3、
4、设是定义在R上的函数,对、恒有,且当时,。1)求证:;2)证明:时恒有;3)求证:在R上是减函数;4)若,求的范围。精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 6 页 -文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F
5、10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4
6、F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D
7、4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8
8、D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL
9、8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 Z
10、L8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6
11、ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3【命题展望】:1.(07 江苏 6)设函数定义在实数集上,它的图像关于直线对称,且当时,则有()2.(07 重庆文 16)函数2254()22xxf xxx的最小值为3.(xx天 津 卷)已 知 函 数 的 图 象 与 函 数(且)的 图 象 关 于 直 线 对 称,记 1)2(2)()()(fxfxfxg若在区间上是增函数,则实数的取值范围是()A BC D函 数 的 单 调 性(作业)1、已知(31)4,1()log,1aaxa xf xx x是上的减函数,那么 a 的取值范围是(
12、A)(0,1)(B)(0,)(C)(D)2、若函数,则该函数在上是()A单调递减无最小值B单调递减有最小值C单调递增无最大值D单调递增有最大值3、若 f(x)=-x2+2ax 与在区间 1,2上都是减函数,则a的值范围是()A BC(0,1)D4、1)的单调增区间是2)已知在 0,1 上是 x 的减函数,则a 的取值范围是3)函数与在上递减,则 a4)奇函数在R上单调递增,对实数x 恒有,则 a5、设 a0,且 a1,试求函数的单调区间6、设函数f(x)=ax(a+1)ln(x+1),其中a-1,求f(x)的单调区间7、已知函数在定义域1,1 上是奇函数,又是减函数,若,求实数 a 的取值范围
13、精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 6 页 -文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10
14、X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI1
15、0X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI
16、10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:C
17、I10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:
18、CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码
19、:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F38、已
20、知函数的定义域是x0 的一切实数,对于定义域内的任意x1,x2,恒有 f(x1x2)=f(x1)f(x2),且当 x1 时,0,f(2)1 1)求证:是偶函数;2)求证:在(0,)上是增函数3)解不等式9、已知定义域为的函数是奇函数。()求的值;()若对任意的,不等式22(2)(2)0f ttftk恒成立,求的取值范围;2019-2020 年高一数学上 3.4 函数的单调性最大(小)值学案沪教版一、新课导航理解函数的最大(小)值及其几何意义;练习:1画出下列函数的图象,并根据图象解答下列问题:1说出 y=f(x)的单调区间,以及在各单调区间上的单调性;2指出图象的最高点或最低点,并说明它能体现
21、函数的什么特征?(1)(2)(3)(4)最大值的定义:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有 f(x)M;(2)存在 x0I,使得 f(x0)=M 那么,称 M是函数 y=f(x)的最大值(Maximum Value)思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义最小值的定义:探讨:2如果函数 y=f(x)在区间 a,b 上单调递增,在区间b,c 上单调递减则函数y=f(x)精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页,共 6 页 -文档编码:CI10X10V1B7Z9 HW4X2D3H6X6
22、ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6
23、 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X
24、6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6
25、X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H
26、6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3
27、H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D
28、3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3在处有 f(b);如果函数 y=f(x)在区间 a,b 上单调递,在区间 b,c 上单调递 ,则函数 y=f(x)在;学会运用函数图象
29、理解和研究函数的性质;探讨:如何判断函数的最大(小)值?例 3:利用的性质(),求函数的最大(小)值;例 4:利用的判断函数的最大(小)值;探讨:2利用求函数的最大(小)值;二、典例探讨【例 1】旅 馆 定 价一个星级旅馆有150 个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:房价(元)住房率(%)160 55 140 65 120 75 100 85 欲使每天的的营业额最高,应如何定价?解:练习 3:快艇和轮船分别从A地和 C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和 15 km/h,已知 AC=150km,经过多少时间后,快艇和轮船之
30、间的距离最短?三、训练基础4:自定义单位,分别找出最高(或低 )点的坐标及最大(或小)值;A B C D x y 0 精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 6 页 -文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4
31、F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D
32、4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8
33、D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL
34、8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 Z
35、L8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6
36、ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6
37、 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F35:函数 f(x)=x2+4ax+2在区间(-,6 内递减,则a 的取值范围是()A、a3 B、a3 C、a-3 D、a-3 6:在已知函数f(x)=4x2-mx+1,在(-,-2 上递减,在-2,+)上递增,则f(x)在1,2上的值域 _.四、小结评价学完本课,在以下各项的后面的“()”中,用“”或“?”标注你是否掌握。(1)理解最大(或小)值的定义。()(2)学会判断函数的最大(小)值的方法。()(3)会利用函数的单调性解决实际问题中的最值问题。()另外,你是否有其他疑问?精品资
38、料-欢迎下载-欢迎下载 名师归纳-第 6 页,共 6 页 -文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10
39、V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X1
40、0V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X
41、10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10
42、X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI1
43、0X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3文档编码:CI10X10V1B7Z9 HW4X2D3H6X6 ZL8D4F10B1F3