《(完整word版)2014年高考数学(文)试题分类汇编:专题3三角函数,推荐文档.pdf》由会员分享,可在线阅读,更多相关《(完整word版)2014年高考数学(文)试题分类汇编:专题3三角函数,推荐文档.pdf(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2014 年高考数学(文)试题分类汇编三角函数C1 角的概念及任意角的三角函数22014 全国卷 已知角 的终边经过点(4,3),则 cos()A.45B.35C35D452DC2 同角三角函数的基本关系式与诱导公式182014 福建卷 已知函数f(x)2cos x(sin x cos x)(1)求 f54的值;(2)求函数 f(x)的最小正周期及单调递增区间18解:方法一:(1)f542cos54sin54cos54 2cos4sin4cos42.(2)因为 f(x)2sin xcos x2cos2xsin 2xcos 2x1 2sin2x41,所以 T22,故函数f(x)的最小正周期为.由
2、 2k22x42k2,kZ,得 k38xk8,kZ.所以 f(x)的单调递增区间为k38,k8,kZ.方法二:f(x)2sin xcos x2cos2xsin 2x cos 2x1 2sin2x41.(1)f542sin1141 2sin41 2.精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 31 页 -(2)因为 T22,所以函数f(x)的最小正周期为.由 2k22x42k2,kZ,得 k38xk8,kZ.所以 f(x)的单调递增区间为k38,k8,kZ.22014 全国新课标卷 若 tan 0,则()Asin 0 Bcos 0 Csin 20 Dcos 20 2C172014 山
3、东卷 ABC 中,角 A,B,C 所对的边分别为a,b,c.已知 a3,cos A63,BA2.(1)求 b 的值;(2)求 ABC 的面积17解:(1)在ABC 中,由题意知,sin A1cos2A33.又因为 BA2,所以 sin BsinA2cos A63.由正弦定理可得,basin Bsin A363333 2.(2)由 BA2得 cos BcosA2sin A33.由 ABC,得 C(AB),所以 sin Csin(AB)sin(AB)sin Acos Bcos Asin B3333636313.因此 ABC 的面积 S12absin C1233213322.C3 三角函数的图象与性
4、质162014 安徽卷 设 ABC 的内角 A,B,C 所对边的长分别是a,b,c,且 b3,c1,ABC 的面积为2.求 cos A 与 a 的值精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 31 页 -文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M
5、3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6
6、文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R
7、5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y
8、4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4
9、C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C
10、5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C6文档编码:CF9Q2C5R5Z6 HH9P10D2Y4M3 ZE3K4V5S4C616解:由三角形面积公式,得1231sin A2
11、,故 sin A2 23.因为 sin2Acos2A1,所以 cos A 1sin2A18913.当 cos A13时,由余弦定理得a2b2c22bccos A32 1221313 8,所以 a2 2.当 cos A13时,由余弦定理得a2b2c22bccos A32 12 213 1312,所以 a2 3.72014 福建卷 将函数 ysin x 的图像向左平移2个单位,得到函数yf(x)的图像,则下列说法正确的是()Ayf(x)是奇函数Byf(x)的周期为Cyf(x)的图像关于直线x2对称Dyf(x)的图像关于点2,0 对称7D图 1-2 52014 江苏卷 已知函数ycos x 与 ys
12、in(2x)(0),它们的图像有一个横坐标为3的交点,则的值是 _5.672014 全国新课标卷 在函数 y精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 31 页 -文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档
13、编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9
14、V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L
15、7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT
16、2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1
17、U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 Z
18、U5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2
19、S1S7cos|2x|,y|cos x|,ycos 2x6,ytan2x4中,最小正周期为的所有函数为()ABCD7AC4 函数sin()yAx的图象与性质82014 天津卷 已知函数f(x)3sin xcos x(0),xR.在曲线 yf(x)与直线 y1 的交点中,若相邻交点距离的最小值为3,则 f(x)的最小正周期为()A.2B.23CD28C72014 安徽卷 若将函数 f(x)sin 2xcos 2x 的图像向右平移个单位,所得图像关于 y 轴对称,则的最小正值是()A.8B.4C.38D.347C132014 重庆卷 将函数 f(x)sin(x )0,22图像上每一点的横坐标缩短为
20、原来的一半,纵坐标不变,再向右平移6个单位长度得到ysin x的图像,则 f6_13.22162014 北京卷 函数 f(x)3sin 2x6的部分图像如图1-4 所示精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页,共 31 页 -文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L
21、7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT
22、2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1
23、U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 Z
24、U5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2
25、S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档
26、编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9
27、V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7图 1-4(1)写出 f(x)的最小正周期及图中x0,y0的值;(2)求 f(x)在区间2,12上的最大值和最小值16解:(1)f(x)的最小正周期为.x076,y03.(2)因为 x2,12,所以 2x6 56,0.于是,当 2x60,即 x12时,f(x)取得最大值0;当 2x62,即 x3时,f(x)取得最小值 3.18,2014 福建卷 已知函数 f(x)2cos x(sin xcos x)(1)求 f54的值;(2)求函数 f(x)的最小正周期及单调递增区间18解:方法一:(1)f542cos54sin54cos54
28、 2cos4sin4cos42.(2)因为 f(x)2sin xcos x2cos2xsin 2xcos 2x1 精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 31 页 -文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S
29、7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:
30、CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U
31、10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8
32、 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T1
33、0I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D
34、1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M
35、8R2S1S72sin2x41,所以 T22,故函数f(x)的最小正周期为.由 2k22x42k2,kZ,得 k38xk8,kZ.所以 f(x)的单调递增区间为k38,k8,kZ.方法二:f(x)2sin xcos x2cos2xsin 2x cos 2x1 2sin2x41.(1)f542sin1141 2sin41 2.(2)因为 T22,所以函数f(x)的最小正周期为.由 2k22x42k2,kZ,得 k38xk8,kZ.所以 f(x)的单调递增区间为k38,k8,kZ.92014 广东卷 若空间中四条两两不同的直线l1,l2,l3,l4满足 l1l2,l2l3,l3l4,则下列结论一定
36、正确的是()Al1l4Bl1l4Cl1与 l4既不垂直也不平行Dl1与 l4的位置关系不确定9D解析 本题考查空间中直线的位置关系,构造正方体进行判断即可如图所示,在正方体ABCD-A1B1C1D1中,设 BB1是直线 l1,BC 是直线 l2,AD 是直线l3,则 DD1是直线 l4,此时 l1l4;设 BB1是直线 l1,BC 是直线 l2,A1D1是直线 l3,则 C1D1是直线 l4,此时 l1l4.故 l1与 l4的位置关系不确定精品资料-欢迎下载-欢迎下载 名师归纳-第 6 页,共 31 页 -文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档
37、编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9
38、V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L
39、7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT
40、2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1
41、U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 Z
42、U5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2
43、S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7182014 湖北卷 某实验室一天的温度(单位:)随时间 t(单位:h)的变化近似满足函数关系:f(t)103cos12tsin12t,t0,24)(1)求实验室这一天上午8 时的温度;(2)求实验室这一天的最大温差18解:(1)f(8)103cos128
44、 sin128 103cos23 sin23103123210.故实验室上午8 时的温度为10.(2)因为 f(t)10232cos12t12sin12t 102sin12t3,又 0t24,所以312t373,所以 1sin12t31.当 t2 时,sin12t31;当 t14 时,sin12t3 1.于是 f(t)在0,24)上取得最大值12,最小值 8.故实验室这一天最高温度为12,最低温度为8,最大温差为4.112014 辽宁卷 将函数 y 3sin 2x3的图像向右平移2个单位长度,所得图像对应的函数()A在区间12,712上单调递减B在区间12,712上单调递增C在区间6,3上单调
45、递减D在区间6,3上单调递增11B142014 新课标全国卷 函数 f(x)sin(x )2sin cos x 的最大值为 _精品资料-欢迎下载-欢迎下载 名师归纳-第 7 页,共 31 页 -文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M
46、8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S
47、7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:
48、CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U
49、10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8
50、 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T10I1U7D1 ZU5M8R2S1S7文档编码:CS9V6U10L7C8 HT2T1