《连接件强度的实用计算.ppt》由会员分享,可在线阅读,更多相关《连接件强度的实用计算.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第四章第四章 弯曲内力弯曲内力(Bending forces)1、弯曲、弯曲:在垂直于杆轴线的平衡力系的作用下,杆的轴线在变形后成:在垂直于杆轴线的平衡力系的作用下,杆的轴线在变形后成为曲线的变形形式。为曲线的变形形式。2、梁、梁:主要承受垂直于轴线荷载的杆件:主要承受垂直于轴线荷载的杆件 轴线是直线的称为直梁,轴线是曲线的称为曲梁。轴线是直线的称为直梁,轴线是曲线的称为曲梁。有对称平面的梁称为对称梁,没有对称平面的梁称为非对称梁有对称平面的梁称为对称梁,没有对称平面的梁称为非对称梁 3、平平面面弯弯曲曲(对对称称弯弯曲曲):若若梁梁上上所所有有外外力力都都作作用用在在纵纵向向对对称称面面内内
2、,梁梁变变形形后后轴轴线线形形成成的的曲线也在该平面内的弯曲。曲线也在该平面内的弯曲。4、非非对对称称弯弯曲曲:若若梁梁不不具具有有纵纵向向对对称称面面,或或梁梁有有纵纵向向对对称称面面上上但但外外力力并并不不作作用用在在纵纵向向对对称面内的弯曲。称面内的弯曲。FqFAFB纵向对称面纵向对称面梁载荷的分类梁载荷的分类均匀分布载荷均匀分布载荷线性(非均匀)线性(非均匀)分布载荷分布载荷集中集中力q qq(x)q(x)P PT TT T分布载荷分布载荷固定铰支座固定铰支座(pin support)滚动铰支座滚动铰支座(roller support)固定支座固定支座(fixed support)支座
3、种类支座种类支座反力支座反力XAYAMAAYAAYAXAA 简支梁简支梁 Simple beam,Simply supported beamABP2P1YAYBXA梁的种类梁的种类悬臂梁悬臂梁 Cantilever beamABP1P2MAYAXAP1P2外伸梁外伸梁 Beam with an overhang(overhangs)ABCYAYBXA4-1 梁的内力(剪力梁的内力(剪力Shear force和弯矩和弯矩Bending moment)PQPmnxl力矩平衡:力矩平衡:M+P(l-x)=0 剪力:剪力:Q=P弯矩:弯矩:M=-P(l-x)力平衡:力平衡:Q-P=0M(按左半边梁,能
4、算出(按左半边梁,能算出Q Q、M M吗?)吗?)QM剪力、弯矩的符号约定剪力、弯矩的符号约定+QQ顺时针转为正顺时针转为正-QQ逆时针转为负逆时针转为负上压下拉为正上压下拉为正+MM上拉下压为负上拉下压为负-MM4-2 剪力、弯矩函数和剪力、弯矩图剪力、弯矩函数和剪力、弯矩图Pmnxl剪力函数:剪力函数:弯矩函数:弯矩函数:(-)弯矩图PQMMQ(+)剪力图qmnxl剪力图(+)弯矩图(-)QMMQ 4-3 载荷集度载荷集度 Distributed load、剪力、弯矩的微分关系剪力、弯矩的微分关系 Defferential relationship(三函数关系)三函数关系)为什么后两个梁微
5、元用为什么后两个梁微元用 M1,Q1,而不用而不用dM,dQ?指明弯矩图凹凸方向指明弯矩图凹凸方向(+)剪力图剪力图斜率为斜率为q(+)弯矩图弯矩图斜率为斜率为0斜率最大斜率最大q为正,弯矩图凹口向上为正,弯矩图凹口向上在力偶作用点,弯矩突变!剪力不变在力偶作用点,弯矩突变!剪力不变在集中力作用点,剪力突变!弯矩不变在集中力作用点,剪力突变!弯矩不变各种荷载下剪力图与弯矩图的形态:各种荷载下剪力图与弯矩图的形态:外力情况外力情况q0(向下向下)无荷载段无荷载段集中力集中力F作用处:作用处:集中力偶集中力偶M作用处:作用处:剪力图上剪力图上的特征的特征(向下斜向下斜直线直线)水平线水平线突变,突
6、突变,突变值为变值为F不变不变弯矩图上弯矩图上的特征的特征(下凸抛物线下凸抛物线)斜直线斜直线有尖点有尖点有突变,有突变,突变值为突变值为M最大弯矩最大弯矩可可 能的截能的截面位置面位置剪力为零的剪力为零的截面截面剪力突变剪力突变的截面的截面弯矩突变弯矩突变的某一侧的某一侧静定梁作剪力图和弯矩图步骤静定梁作剪力图和弯矩图步骤STEP 1:求反力求反力STEP 2:分段求值分段求值STEP 3:作剪力图和弯矩图作剪力图和弯矩图举例举例4-4 平面刚架平面刚架(Plane frame)的内力图)的内力图刚性结点的特点:刚性结点的特点:1、外力作用下夹角不变、外力作用下夹角不变2、能传递力和力矩、能
7、传递力和力矩STEP 1:求反力求反力STEP 2:分段求值分段求值STEP 3:作内力图作内力图规定规定 正内力画在刚正内力画在刚架外侧或架外侧或 上侧,负内力上侧,负内力反之;注明正负号反之;注明正负号一致对外法则:一致对外法则:举举 例例4-5 叠加原理叠加原理=+MAMBM0+MAMBM0BMAAqMBlB叠加原理:叠加原理:几个载荷共同作用的效果,等于几个载荷共同作用的效果,等于各个载荷单独效果之和各个载荷单独效果之和叠加原理成立的前提条件:叠加原理成立的前提条件:(1)小变形)小变形(2)材料满足郑玄)材料满足郑玄虎克定理(线性本构关系)虎克定理(线性本构关系)“效果效果”指载荷引起的反力、内力、应力或变形指载荷引起的反力、内力、应力或变形“之和之和”代数和代数和