《机构学和机器人学1空间机构的基础知识.ppt》由会员分享,可在线阅读,更多相关《机构学和机器人学1空间机构的基础知识.ppt(44页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第一章第一章 空间机构的基础知识空间机构的基础知识一、构件一、构件机构中能作相对运动的刚体。机构中能作相对运动的刚体。空间自由构件具有六个自由度。空间自由构件具有六个自由度。1-1 1-1 空间机构的结构分析空间机构的结构分析二、运动副二、运动副两构件直接接触,允许两构件直接接触,允许 相对运动的几何连接。相对运动的几何连接。运动副的自由度运动副的自由度两构件用运动副联接后两构件用运动副联接后 所允许的相对运动。所允许的相对运动。运动副的自由度一定满足:运动副的自由度一定满足:0F*60F*6运动副提供的约束数目至少为运动副提供的约束数目至少为1 1最多为最多为5 5。l 根据运动副的约束数目
2、的不同,空间根据运动副的约束数目的不同,空间机构运动副分为五机构运动副分为五级级,即具有一个约,即具有一个约束即为束即为级运动副依次类推。也可根级运动副依次类推。也可根据运动副的自由度据运动副的自由度 f 等于等于1、2、3、4、5而分别称为而分别称为、类类副。副。lf f=1=1 类类副副回转副(符号回转副(符号R R)l 移动副(符号移动副(符号P P)l 螺旋副(符号螺旋副(符号H H)lf f=2=2 类类副副圆柱副(符号圆柱副(符号C C)l 球销副(符号球销副(符号S S)l 指环副(符号指环副(符号T T)l 指环螺旋副(符号指环螺旋副(符号T TH H)lf f=3=3 类类副
3、副球面副(符号球面副(符号S S)l 平面副(符号平面副(符号P PL L)l 柱销副(符号柱销副(符号S SS S)lf f=4=4 类类副副球槽副(球槽副(S SG G),l 平面圆柱副(平面圆柱副(C CP P)lf f=5=5 类类副副球平面副(球平面副(S SP P)l 以上所有运动副若为面接触的运动以上所有运动副若为面接触的运动副称为副称为低副低副。l 以上所有运动副若为点线接触的运以上所有运动副若为点线接触的运动副称为动副称为高副高副。三、运动链和机构三、运动链和机构 运动链运动链两个以上构件以运动副连接两个以上构件以运动副连接 而成的系统。而成的系统。闭式链闭式链组成一个或多个
4、封闭形的运动链。组成一个或多个封闭形的运动链。开链开链不可组成封闭形的运动链。不可组成封闭形的运动链。l 简单运动链简单运动链运动链中可出现与其它三运动链中可出现与其它三个构件相连的构件时。如图个构件相连的构件时。如图a、b、c,否则,否则称为复杂运动链,如图称为复杂运动链,如图d。l 运动链的自由度运动链的自由度独立相对运动的个数独立相对运动的个数或各构件相互位置变化所需自由参数(广或各构件相互位置变化所需自由参数(广义坐标)的个数。例如上图义坐标)的个数。例如上图a四个运动参数四个运动参数1、2、3、4中只有一个自由参数(如中只有一个自由参数(如1)F=1,上图,上图b三个运动参数三个运动
5、参数1、2、3均为自由参数,均为自由参数,F=3。l四、空间机构确定运动的条件四、空间机构确定运动的条件l 同样对于空间机构原动件数同样对于空间机构原动件数l =机构自由度机构自由度F Fl 若空间机构原动件数小于若空间机构原动件数小于F F则运动不确定,则运动不确定,大于大于F F将无法运动甚至机构遭至毁坏。将无法运动甚至机构遭至毁坏。l注意:注意:有间隙的情况。有间隙的情况。l五、空间机构的自由度五、空间机构的自由度l(一)空间机构的自由度(一)空间机构的自由度l 若空间机构由若空间机构由N个构件组成,其中之一为个构件组成,其中之一为机架,活动构件数为机架,活动构件数为n=N-1,构件其,
6、构件其P1个个级副、级副、P2个个级副级副P5个个级副则空间机级副则空间机构相对于机架自由度构相对于机架自由度:l l (11)l 作变换,若机构中共有作变换,若机构中共有K个运动副,第个运动副,第i个运动个运动副的自由度为副的自由度为 fi 即提供的约束为(即提供的约束为(6fi),则:),则:l 在在单闭链空间机构单闭链空间机构中,由于中,由于K=N,代入,代入(12)得:)得:l问:问:开链机构?开链机构?l 例例1:l由式(由式(13)当)当F=1时,运动副所允时,运动副所允许的自由度为许的自由度为7。l例例2 2:l例例3 3:l选择两种具有转动输入和直线输出的单自选择两种具有转动输
7、入和直线输出的单自由度空间机构(规定活动构件数由度空间机构(规定活动构件数n3)。)。l例例4 4:(二)具有公共约束条件的机构自由度计算(二)具有公共约束条件的机构自由度计算l l所得公共约束由机构运动副的特殊配置,使所得公共约束由机构运动副的特殊配置,使构件都失去了某些运动的可能,即该机构构件都失去了某些运动的可能,即该机构上所有构件加上了若干个公共约束。因此上所有构件加上了若干个公共约束。因此(11)可能直接用需修正。对机构所加)可能直接用需修正。对机构所加公共约束最多为公共约束最多为4个。个。l 对机构所加公共约束可分为五族,由于具对机构所加公共约束可分为五族,由于具有有m个公共约束的
8、机构任一活动构件组成运个公共约束的机构任一活动构件组成运动链时只具有(动链时只具有(6m)个自由度。而运动)个自由度。而运动链中:链中:l 级副级副约束度为(约束度为(5m)l 级副级副约束度为(约束度为(4m)l l 当当m=0(零族机构)即可加任何公共约束,(零族机构)即可加任何公共约束,机构自由度计算公式用(机构自由度计算公式用(11)。)。lm=1(一族机构)不可能存在(一族机构)不可能存在级副级副l (14)lm=2(二族机构)不可能存在(二族机构)不可能存在、级副级副l (15)lm=3(三族机构)不可能存在(三族机构)不可能存在、级副级副l (16)lm=4(四族机构)不可能存在
9、(四族机构)不可能存在、级副级副l (17)l总结得:总结得:l (18)l 类似(类似(12)式写法,第)式写法,第i 运动副的自由运动副的自由度度fi,公共约束为,公共约束为m,该运动副提供的约束,该运动副提供的约束(6mfi)则:)则:l 单闭链空间机构单闭链空间机构,由于运动副数为,由于运动副数为K个等个等于机构构件数于机构构件数N:l 公共约束非常困难,对分族学术界还有公共约束非常困难,对分族学术界还有异议。应用式(异议。应用式(1 11 1)除需正确判断机构)除需正确判断机构的族以外,与平面机构类似还需注意虚约的族以外,与平面机构类似还需注意虚约束和局部自由度。束和局部自由度。l(
10、三)割断机架计算机构的自由度三)割断机架计算机构的自由度l 上式第一项可以看作机架割断后所得的上式第一项可以看作机架割断后所得的一个开式链的自由度,然后再把末杆接到一个开式链的自由度,然后再把末杆接到机构上,回到原机构。机构上,回到原机构。l 算出的结果与(算出的结果与(1 11010)相同,因此()相同,因此(1 11010)右边第二项右边第二项为末杆接上后所消除的自由度,为末杆接上后所消除的自由度,因因此关键是判断末杆的自由度此关键是判断末杆的自由度。l例例5:将机架断开成一开式链,则开式链:将机架断开成一开式链,则开式链:l 由图示末杆由图示末杆4的自由度为的自由度为3,与开式链不同,由
11、,与开式链不同,由式(式(110)则)则=3l 对于空间机构末端自由度最高不可超过对于空间机构末端自由度最高不可超过6 6个,分析末端个,分析末端自由度归结为分析末端转动数目和末端移动数目之和:自由度归结为分析末端转动数目和末端移动数目之和:l =r+t=r+tt+tr (r3,t 3)的直观判别法的直观判别法:1 1、如各转动或移动轴线都平行于一个方向,则、如各转动或移动轴线都平行于一个方向,则r r=1=1或或tttt=1=1;如分别平行于两个不同的方向,则;如分别平行于两个不同的方向,则r r=2=2或或tttt=2=2;如还有不与前两个方向共面的第三个方向,则;如还有不与前两个方向共面
12、的第三个方向,则r r=3=3或或tttt=3=3。2 2、当、当tttt3 3时,当构件绕两个平行轴转动时,由这两个时,当构件绕两个平行轴转动时,由这两个转动可衍生一个移动自由度,即转动可衍生一个移动自由度,即trtr=1=1;当构件绕三个或;当构件绕三个或三个以上平行轴转动时,则衍生两个移动自由度,即三个以上平行轴转动时,则衍生两个移动自由度,即trtr=2=2。l 多闭链空间机构闭链空间机构,若空间机构有,若空间机构有L个封闭个封闭形,则割断机架后可以得到形,则割断机架后可以得到L个开链,就有个开链,就有L个末杆,再考虑有个末杆,再考虑有fa个局部自由度,则:个局部自由度,则:(1-11
13、)l例例6 6:该空间机构有该空间机构有2 2个封闭形,割断机架后可以得到个封闭形,割断机架后可以得到2 2个末个末杆,两个开式链:杆,两个开式链:1-2-3-4-11-2-3-4-1和和1-4-5-6-11-4-5-6-1。则:。则:l例例7 7:l例例8 8:该空间机构有该空间机构有5个封闭形个封闭形:1-2-3-4-1(=3);1-4-5-13-6-1(=6);6-13-11-12-6(=3);9-10-12-11-9(=3);1-6-7-8-1(=6);则:则:l六、空间机构的应用六、空间机构的应用缝纫机弯针机构缝纫机弯针机构空间连杆机构空间连杆机构0-7-8-9-10-0,F2起落架
14、收放转轮机构起落架收放转轮机构收放动作实现:空间四杆机构收放动作实现:空间四杆机构0-1-2-3-0和和0-1-4-5-0转轮动作实现:空间机构转轮动作实现:空间机构0-1-6-11-0和和1-6-7-8-9-10-11-2 1-2 空间机构的结构综合空间机构的结构综合1、单自由度平面机构的结构综合、单自由度平面机构的结构综合 研究一定数量的构件和运动副可以组成多少机构型研究一定数量的构件和运动副可以组成多少机构型式的综合过程。实质是排列与组合的数学问题。可利用式的综合过程。实质是排列与组合的数学问题。可利用图论和矩阵工具研究。图论和矩阵工具研究。单自由度的低副机构是由具有单自由度的低副机构是
15、由具有4个自由度的运动链个自由度的运动链所组成,自由度为所组成,自由度为4的运动链应满足下列关系:的运动链应满足下列关系:(1)n2=4,n3=4(2)n2=5,n3=2,n4=1(3)n2=6,n4=22、图论法进行分析、图论法进行分析1 2 3 4 5 6 7 图与运动链的变换:运动链的综合问题可以转化为图与运动链的变换:运动链的综合问题可以转化为研究一定数量的顶与边能够联接为多少种不同构图的问题。研究一定数量的顶与边能够联接为多少种不同构图的问题。图中顶代表构件,边代表转动副。变换图中边作为构件,图中顶代表构件,边代表转动副。变换图中边作为构件,顶作为转动副,变换图实际上就是运动链的图形
16、。顶作为转动副,变换图实际上就是运动链的图形。以八杆链为例,对应的图中,以八杆链为例,对应的图中,v=8,e=10,L=3。3、空间单封闭形单自由、空间单封闭形单自由度机构的结构综合度机构的结构综合1)当)当=6,如表综合可,如表综合可得得12种类型种类型433种机构。种机构。2)综合四杆单封闭形机)综合四杆单封闭形机构,可得构,可得3种类型种类型138种机构。其中种机构。其中9种具有种具有特殊实用价值。特殊实用价值。3)构成闭合约束数小于)构成闭合约束数小于6的机构时,组成条件的机构时,组成条件需要严格遵守,否则需要严格遵守,否则可能出现不能运动的可能出现不能运动的刚架。刚架。还有特殊的三类:还有特殊的三类:R-R-R-RR-S-S-RR-C-C-R