《matlab回归分析》PPT课件.ppt

上传人:wuy****n92 文档编号:54711065 上传时间:2022-10-29 格式:PPT 页数:80 大小:1.77MB
返回 下载 相关 举报
《matlab回归分析》PPT课件.ppt_第1页
第1页 / 共80页
《matlab回归分析》PPT课件.ppt_第2页
第2页 / 共80页
点击查看更多>>
资源描述

《《matlab回归分析》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《matlab回归分析》PPT课件.ppt(80页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、数学建模与数学实验数学建模与数学实验回归分析回归分析10/29/20221实验目的实验目的实验内容实验内容2、掌握用数学软件求解回归分析问题。、掌握用数学软件求解回归分析问题。1、直观了解回归分析基本内容。、直观了解回归分析基本内容。1 1、回归分析的基本理论回归分析的基本理论。3 3、实验作业。实验作业。2、用数学软件求解回归分析问题。用数学软件求解回归分析问题。10/29/20222一元线性回归一元线性回归多元线性回归多元线性回归回归分析回归分析数数学学模模型型及及定定义义*模模型型参参数数估估计计*检检验验、预预测测与与控控制制可可线线性性化化的的一一元元非非线线性性回回归归(曲曲线线回

2、回归归)数数学学模模型型及及定定义义*模模型型参参数数估估计计*多多元元线线性性回回归归中中的的检检验验与与预预测测逐逐步步回回归归分分析析10/29/20223一、数学模型一、数学模型例例1 测16名成年女子的身高与腿长所得数据如下:以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi)在平面直角坐标系上标出.散点图解答10/29/20224一元线性回归分析的主要任务主要任务是:返回返回10/29/20225二、模型参数估计二、模型参数估计1、回归系数的最小二乘估计、回归系数的最小二乘估计10/29/20226返回返回10/29/20227三、检验、预测与控制三、检验、预测与控制1、回

3、归方程的显著性检验、回归方程的显著性检验10/29/20228()F检验法检验法()t检验法检验法10/29/20229()r检验法检验法10/29/2022102、回归系数的置信区间、回归系数的置信区间10/29/2022113、预测与控制、预测与控制(1)预测)预测10/29/202212(2)控制)控制返回返回10/29/202213四、可线性化的一元非线性回归四、可线性化的一元非线性回归(曲线回归)(曲线回归)例例2出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表:解答10/29/2022

4、14散点图此即非线性回归非线性回归或曲线回归曲线回归问题(需要配曲线)配曲线的一般方法是:配曲线的一般方法是:10/29/202215通常选择的六类曲线如下:返回返回10/29/202216一、数学模型及定义一、数学模型及定义返回返回10/29/202217二、模型参数估计二、模型参数估计10/29/202218返回返回10/29/202219三、多元线性回归中的检验与预测三、多元线性回归中的检验与预测()F检验法检验法()r检验法检验法(残差平方和)残差平方和)10/29/2022202、预测、预测(1)点预测)点预测(2)区间预测)区间预测返回返回10/29/202221四、逐步回归分析四

5、、逐步回归分析(4)“有进有出”的逐步回归分析。(1)从所有可能的因子(变量)组合的回归方程中选择最优者;(2)从包含全部变量的回归方程中逐次剔除不显著因子;(3)从一个变量开始,把变量逐个引入方程;选择“最优”的回归方程有以下几种方法:“最最优优”的的回回归归方方程程就是包含所有对Y有影响的变量,而不包含对Y影响不显著的变量回归方程。以第四种方法,即逐步回归分析法逐步回归分析法在筛选变量方面较为理想.10/29/202222 这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。逐步回归分析法逐步回归分析法的思想:从一个自变量开始,视自变量Y作用的显著程度

6、,从大到地依次逐个引入回归方程。当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉。引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步。对于每一步都要进行Y值检验,以确保每次引入新的显著性变量前回归方程中只包含对Y作用显著的变量。返回返回10/29/202223统计工具箱中的回归分析命令统计工具箱中的回归分析命令1、多元线性回归、多元线性回归2、多项式回归、多项式回归3、非线性回归、非线性回归4、逐步回归、逐步回归返回返回10/29/202224多元线性回归多元线性回归 b=regress(Y,X)1、确定回归系数的点估计值:确定回归系数的点估计值:10/29/202225

7、3、画出残差及其置信区间:画出残差及其置信区间:rcoplot(r,rint)2、求回归系数的点估计和区间估计、并检验回归模型:求回归系数的点估计和区间估计、并检验回归模型:b,bint,r,rint,stats=regress(Y,X,alpha)回归系数的区间估计残差用于检验回归模型的统计量,有三个数值:相关系数r2、F值、与F对应的概率p置信区间 显著性水平(缺省时为0.05)10/29/202226例例1 解:解:1、输入数据:输入数据:x=143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164;X=ones(16

8、,1)x;Y=88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102;2、回归分析及检验:回归分析及检验:b,bint,r,rint,stats=regress(Y,X)b,bint,statsTo MATLAB(liti11)题目10/29/2022273、残差分析,作残差图:、残差分析,作残差图:rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x能较好的符合原始数据,而第二个数据可视为异常点.4、预测及作图:、预测及作图:z=b

9、(1)+b(2)*x plot(x,Y,k+,x,z,r)返回返回To MATLAB(liti12)10/29/202228多多项项式式回回归归(一)一元多项式回归(一)一元多项式回归(1)确定多项式系数的命令:p,S=polyfit(x,y,m)(2)一元多项式回归命令:polytool(x,y,m)1、回归:、回归:y=a1xm+a2xm-1+amx+am+12、预测和预测误差估计:、预测和预测误差估计:(1)Y=polyval(p,x)求polyfit所得的回归多项式在x处 的预 测值Y;(2)Y,DELTA=polyconf(p,x,S,alpha)求polyfit所得 的回归多项式在

10、x处的预测值Y及预测值的显著性为1-alpha的置信区间Y DELTA;alpha缺省时为0.5.10/29/202229法一法一 直接作二次多项式回归:直接作二次多项式回归:t=1/30:1/30:14/30;s=11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;p,S=polyfit(t,s,2)To MATLAB(liti21)得回归模型为:10/29/202230法二法二化为多元线性回归:化为多元线性回归:t=1/30:1/30:14/30;s=11.86 15.

11、67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48;T=ones(14,1)t(t.2);b,bint,r,rint,stats=regress(s,T);b,statsTo MATLAB(liti22)得回归模型为:Y=polyconf(p,t,S)plot(t,s,k+,t,Y,r)预测及作图预测及作图To MATLAB(liti23)10/29/202231(二)多元二项式回归(二)多元二项式回归命令:rstool(x,y,model,alpha)nm矩阵显著性水平(缺省时为0.05)

12、n维列向量10/29/202232例例3 设某商品的需求量与消费者的平均收入、商品价格的统计数 据如下,建立回归模型,预测平均收入为1000、价格为6时 的商品需求量.法一法一 直接用多元二项式回归:x1=1000 600 1200 500 300 400 1300 1100 1300 300;x2=5 7 6 6 8 7 5 4 3 9;y=100 75 80 70 50 65 90 100 110 60;x=x1 x2;rstool(x,y,purequadratic)10/29/202233 在画面左下方的下拉式菜单中选”all”,则beta、rmse和residuals都传送到Matl

13、ab工作区中.在左边图形下方的方框中输入1000,右边图形下方的方框中输入6。则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.10/29/202234在Matlab工作区中输入命令:beta,rmseTo MATLAB(liti31)为剩余标准差,表示应变量Y值对于回归直线的离散程度。10/29/202235结果为:b=stats=法二法二To MATLAB(liti32)返回返回将 化为多元线性回归:10/29/202236非线性回非线性回归归(1)确定回归系数的命令:beta,r,J=nlinfit(

14、x,y,model,beta0)(2)非线性回归命令:nlintool(x,y,model,beta0,alpha)1、回归:、回归:残差Jacobian矩阵回归系数的初值是事先用m-文件定义的非线性函数估计出的回归系数输入数据x、y分别为 矩阵和n维列向量,对一元非线性回归,x为n维列向量。2、预测和预测误差估计:、预测和预测误差估计:Y,DELTA=nlpredci(model,x,beta,r,J)求nlinfit 或nlintool所得的回归函数在x处的预测值Y及预测值的显著性为1-alpha的置信区间Y DELTA.10/29/202237例例4 对第一节例2,求解如下:2、输入数据

15、:x=2:16;y=6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76;beta0=8 2;3、求回归系数:beta,r,J=nlinfit(x,y,volum,beta0);beta得结果:beta=即得回归模型为:To MATLAB(liti41)题目10/29/2022384、预测及作图:YY,delta=nlpredci(volum,x,beta,r,J);plot(x,y,k+,x,YY,r)To MATLAB(liti42)10/29/202239例例5财政收入预测问题:财政收入

16、与国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资等因素有关。下表列出了1952-1981年的原始数据,试构造预测模型。解解 设国民收入、工业总产值、农业总产值、总人口、就业人口、固定资产投资分别为x1、x2、x3、x4、x5、x6,财政收入为y,设变量之间的关系为:y=ax1+bx2+cx3+dx4+ex5+fx6使用非线性回归方法求解。10/29/2022401对回归模型建立对回归模型建立M文件文件model.m如下如下:function yy=model(beta0,X)a=beta0(1);b=beta0(2);c=beta0(3);d=beta0(4);e=beta0

17、(5);f=beta0(6);x1=X(:,1);x2=X(:,2);x3=X(:,3);x4=X(:,4);x5=X(:,5);x6=X(:,6);yy=a*x1+b*x2+c*x3+d*x4+e*x5+f*x6;10/29/2022412.主程序主程序liti6.m如下如下:.2927.00 6862.00 1273.00 100072.0 43280.00 496.00;y=184.00 216.00 248.00 254.00 268.00 286.00 357.00 444.00 506.00.271.00 230.00 266.00 323.00 393.00 466.00 352

18、.00 303.00 447.00.564.00 638.00 658.00 691.00 655.00 692.00 657.00 723.00 922.00.890.00 826.00 810.0;beta0=0.50-0.03-0.60 0.01-0.02 0.35;betafit=nlinfit(X,y,model,beta0)To MATLAB(liti6)10/29/202242 betafit=123456结果为结果为:返返回回10/29/202243逐逐步步回回归归逐步回归的命令是:stepwise(x,y,inmodel,alpha)运行stepwise命令时产生三个图形窗口

19、:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量)显著性水平(缺省时为0.5)自变量数据,阶矩阵因变量数据,阶矩阵10/29/202244例例6 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4 有关,今测得一组数据如下,试用逐步

20、回归法确定一个 线性模 型.1、数据输入:、数据输入:x1=7 1 11 11 7 11 3 1 2 21 1 11 10;x2=26 29 56 31 52 55 71 31 54 47 40 66 68;x3=6 15 8 8 6 9 17 22 18 4 23 9 8;x4=60 52 20 47 33 22 6 44 22 26 34 12 12;y=78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4;x=x1 x2 x3 x4;10/29/2022452、逐步回归:、逐步回归:(1)先在初始模型

21、中取全部自变量:)先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table图图StepwisePlot中四条直线都是虚中四条直线都是虚线,说明模型的显著性不好线,说明模型的显著性不好从表从表StepwiseTable中看出变中看出变量量x3和和x4的显著性最差的显著性最差.10/29/202246(2)在图)在图StepwisePlot中点击直线中点击直线3和直线和直线4,移去变量,移去变量x3和和x4移去变量移去变量x3和和x4后模型具有显著性后模型具有显著性.虽然剩余标准差(虽然剩余标准差(RMSE)没)没有太大的变化,但是统计

22、量有太大的变化,但是统计量F的的值明显增大,因此新的回归模型值明显增大,因此新的回归模型更好更好.To MATLAB(liti51)10/29/202247(3)对变量)对变量y和和x1、x2作线性回归:作线性回归:X=ones(13,1)x1 x2;b=regress(y,X)得结果:b=12To MATLAB(liti52)返回返回10/29/2022481、考察温度x对产量y的影响,测得下列10组数据:求y关于x的线性回归方程,检验回归效果是否显著,并预测x=42时产量的估值及预测区间(置信度95%).2、某零件上有一段曲线,为了在程序控制机床上加工这一零件,需要求这段曲线的解析表达式,

23、在曲线横坐标xi处测得纵坐标yi共11对数据如下:求这段曲线的纵坐标y关于横坐标x的二次多项式回归方程.10/29/20224910/29/2022504、混凝土的抗压强度随养护时间的延长而增加,现将一批混凝土作成12个试块,记录了养护日期x(日)及抗压强度y(kg/cm2)的数据:10/29/20225110/29/202252四四 软件开发人员的薪金软件开发人员的薪金问题:问题:一家高技术公司人事部门为研究软件开发人员的薪金与他们的资历、管理责任、教育程度等因素之间的关系,要建立一个数学模型,以便分析公司人士策略的合理性,并作为新聘用人员工资的参考。他们认为目前公司人员的薪金总体上是合理的

24、,可以作为建模的依据,于是调查了46名开发人员的档案资料,如表。其中资历一列指从事专业工作的年数,管理一列中1表示管理人员,0表示非管理人员,教育一列中1表示中学程度,2表示大学程度,3表示更高程度(研究生)10/29/20225310/29/202254开发人员的薪金与他们的资历、管理责任、教育程度10/29/202255分析与假设:分析与假设:按照常识,薪金自然按照资历(年)的增长而增加,管理人员的薪金高于非管理人员,教育程度越高薪金越高。薪金记作,资历(年)记作,为了表示是否为管理人员定义1,管理人员0,非管理人员为了表示三种教育程度,定义1,中学0,其它1,大学0,其它这样,中学用表示

25、,大学用表示,研究生则用表示。10/29/202256为了简单起见,我们假定资历(年)对薪金的作用是线性的,即资历每加一年,薪金的增长是常数;管理责任、教育程度、资历诸因素之间没有交互作用,建立线性回归模型。基本模型:基本模型:薪金与资历,管理责任,教育程度之间的多元线性回归模型为其中,是待估计的回归系数,是随机误差。利用MATLAB的系统工具箱可以得到回归系数及其置信区间(置信水平 )、检验统计量的结果,见表。10/29/20225710/29/202258结果分析:结果分析:从表中,即因变量(薪金)的95.7%可由模型确定,值超过检验的临界值,远小于,因而模型从整体来看是可用的。比如,利用

26、模型可以估计(或估计)一个大学毕业、有2年资历、管理人员的薪金为模型中各个回归系数的含义可初步解释如下:的系数为546,说明资历每增加一年,薪金增长546;的系数为6883,说明管理人员的薪金比非管理人员多6883;的系数为-2994,说明中学程度的薪金比研究生少2994;的系数为148,说明大学程度的薪金比研究生多148,但是应该注意到的置信区间包含零点,所以这个系数的解释是不可靠的。注意:上述解释是就平均值来说的,并且,一个因素改变引起的因变量的变化量,都是在其它因素不变的条件下才成立的。10/29/202259进一步讨论:进一步讨论:的置信区间包含零点,说明上述基本模型存在缺点。为了寻找

27、改进的方向,常用残差分析法(残差指薪金的实际值与模型估计的薪金之差,是基本模型中随机误差的估计值,这里用同一个符号)。我们将影响因素分成资历与管理教育组合两类,管理-教育组合定义如表。管理管理教育组合教育组合10/29/202260为了对残差进行分析,下图给出与资历的关系,及与管理-教育组合间的关系。与资历 的关系与组合的关系从左图看,残差大概分成3个水平,这是由于6种管理教育组合混在一起,在模型中未被正确反映的结果;从右图看,对于前4个管理教育组合,残差或者全为正,或者全为负,也表明管理-教育组合在模型中处理不当。在模型中,管理责任和教育程度是分别起作用的,事实上,二者可能起着交互作用,如大

28、学程度的管理人员的薪金会比二者分别的薪金之和高一点。10/29/202261以上分析提示我们,应在基本模型中增加管理更好的模型:更好的模型:与教育的交互项,建立新的回归模型。增加与的交互项后,模型记作利用MATLAB的统计工具箱得到的结果如表:10/29/20226210/29/202263由上表可知,这个模型的做该模型的两个残差分析图,可以看出,已经消除了不正常现象,这也说明了模型的适用性。和值都比上一个模型有所改进,并且所有回归系数的置信区间都不含零点,表明这个模型完全可用。与的关系与组合的关系10/29/202264从上图,还可以发现一个异常点:具有10年资历、大学程度的管理人员(编号3

29、3)的实际薪金明显低于模型的估计值,也明显低于与他有类似经历的其他人的薪金。这可能是由我们未知的原因造成的。为了使个别数据不致影响整个模型,应该将这个异常数据去掉,对模型重新估计回归系数,得到的结果如表。残差分析见图。可以看到,去掉异常数据后结果又有改善。10/29/20226510/29/202266与的关系与组合的关系模型的应用:模型的应用:对于第二个模型,用去掉异常数据(33号)后估计出的系数得到的结果是满意的。模型的应用之一,可以用来“制订”6种管理教育组合人员的“基础”薪金(即资历为零的薪金),这是平均意义上的。利用第二个模型和去掉异常数据后得到的回归系数,可以得到如下结果:10/2

30、9/20226710/29/202268可以看出,大学程度的管理人员薪金比研究生程度管理人员薪金高,而大学程度的非管理人员薪金比研究生程度非管理人员薪金略低。当然,这是根据这家公司实际数据建立的模型得到的结果,并不具普遍性。评注:评注:从建立回归模型的角度,通过这个问题的求解我们学习了:1)对于影响因变量的定性因素(管理、教育),可以引入 01变量来处理,01变量的个数比定性因素的水平少 1(如教育程度有3个水平,引入2个01变量)。2)用残差分析法可以发现模型的缺陷,引入交互作用项常 常可以得到改善。3)若发现异常值应剔除,有助于结果的合理性。思考:思考:在这里我们由简到繁,先分别引进管理和

31、教育因素,再引入交互项。试直接对6种管理-教育组合引入5个01变量,建立模型,看结果如何。10/29/202269五五 教学评估教学评估为了考评教师的教学质量,教学研究部门设计了一个教学评估表,对学生进行一次问卷调查,要求学生对12位教师的15门课程(其中3为教师有两门课程)按以下7项内容打分,分值为15分(5分最好,1分最差):问题:问题:课程内容组织的合理性;主要问题展开的逻辑性;回答学生问题的有效性;课下交流的有助性;教科书的帮助性;考试评分的公正性;对教师的总体评价。10/29/202270收回问卷调查表后,得到了学生对12为教师、15门课程各项评分的平均值,见表。10/29/2022

32、7110/29/202272不一定每项都对教师总体评价有显著影响,并且各项内容之间也可能存在很强的相关性,他们希望得到一个总体评价与各项具体内容之间的模型,模型应尽量简单和有效,并且由此能给教师一些合理的建议,以提高总体评价。准备知识:准备知识:逐步回归这个问题给出了6个自变量,但我们希望从中选出对因变量影响显著的那些来建立回归模型。变量选择的标准应该是将所有对因变量影响显著的自变量都选入模型,而影响不显著的自变量都不选入模型,从便于应用的角度,应使模型中的自变量个数尽量少。逐步回归就是一种从众多自变量中有效的选择重要变量的方法。教学研究部门认为,所列各项具体内容10/29/202273逐步回

33、归的基本思路是,先确定一个包含若干自变量的初始集合,然后每次从集合外的变量中引入一个对因变量影响最大的,再对集合中的变量进行检验,从变得不显著的变量中移出一个影响最小的,依次进行,直到不能引入和移出为止。引入和移出都以给定的显著性水平为标准。利用MATLAB系统工具箱中的逐步回归命令stepwise可以实现逐步回归。Stepwise提供人机交互式画面,可以在画面上自由引入和移出变量,进行统计分析。具体用法参见MATLAB丛书回归模型的建立与求解:回归模型的建立与求解:我们利用MATLAB命令得到各个变量的回归系数,置信区间,及剩余标准差(RMSE),决定系数(R-square),值,值。见表。

34、10/29/202274可以看到,除外其他自变量的回归系数置信区间都包含零点在临界状态,将一一移去(与次序无关),当模型中仅含时结果见下表。10/29/202275可以看到,仅含模型的回归系数置信区间远离零点,对的影响是显著的,与上个结果比较,剩余标准差由减少到,虽然略有下降,但值大大提高。这些表明仅含模型是合适的。但MATLAB命令并未给出回归模型的常数项。我们由以下方法计算得到:10/29/202276终得到的模型为在最终模型里回归变量只有其中,分别是的平均值。利用逐步回归最模型解释:模型解释:,是一个简单易用的模型,据此可把课程内容组织的合理性()和回答学生问题的有效性()列入考评的重点

35、。上式表明,的分值每增加一分,对教师的总体评价就增加约分;的分值每增加一分,对教师的总体评价就增加约分。应建议教师注重这两方面的工作。为了分析其它变量没有进入最终模型的原因,可以计算的相关系数,利用MATLAB系统工具箱中的corrcoef命令直接得到这7个变量的相关系数矩阵:10/29/202277一般认为,两个变量的相关系数超过时才具有显著的相关关系。由上面的结果知,与相关关系显著的只有而未进入最终模型,是由于它与的相关系数显著(相关系数),可以说,模型中有了以后10/29/202278变量如果初步看来影响因变量的因素较多,并得到了大量的数据。为了建立一个有效的、便于应用的模型,可以利用逐步回归只选择那些影响显著的变量“入围”。如果怀疑原有变量的平方项、交叉项等也会对变量有显著影响也可以将这些项作为新的自变量加入到候选行列,用逐步回归来处理。是多余的,应该去掉。评注:评注:10/29/202279练习:练习:下表给出了某工厂产品的生产批量与单位成本(元)的数据,从散点图,可以明显的发现,生产批量在500以内时,单位成本对生产批量服从一种线性关系,生产批量超过500时服从另一种线性关系,此时单位成本明显下降。希望你构造一个合适的回归模型全面地描述生产批量与单位成本的关系。10/29/202280

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁