《原子吸收光谱法与原子荧光光谱法.ppt》由会员分享,可在线阅读,更多相关《原子吸收光谱法与原子荧光光谱法.ppt(60页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第第7 7章章 原子吸收光谱法与原子吸收光谱法与原子荧光光谱法原子荧光光谱法Alan Walsh(1916-1998)和他的原子吸收光谱仪在一起原子吸收光谱法(AAS)是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法。它在地质、冶金、机械、化工、农业、食品、轻工、生物医药、环境保护、材料科学等各个领域有广泛的应用。近年来,由于对AAS的创新研究,有了突破性进展。7.1 原子吸收光谱法原子吸收光谱法Boltzmann分布定律:在温度较高等离子体火焰中,核外层电子在各个量子化能级上的分布遵循Boltzmann分布定律:7.1.1 原
2、子吸收光谱的产生原子吸收光谱的产生 7.1.1 原子吸收光谱的产生原子吸收光谱的产生处于基态原子核外层电子,如果外界所提供特定能量(E)的光辐射恰好等于核外层电子基态与某一激发态(i)之间的能量差(Ei)时,核外层电子将吸收特征能量的光辐射由基态跃迁到相应激发态,从而产生原子吸收光谱。7.1.2 原子吸收谱线的轮廓原子吸收谱线的轮廓原子吸收和发射谱线并非是严格的几何线,其谱线强度随频率(v)分布急剧变化,通常以吸收系数(Kv)为纵坐标和频率(v)为横坐标的Kvv曲线描述。Kvv曲线图中Kv的极大值处称为峰值吸收系数(K0),与其相对应的v称为中心频率(v0),吸收谱线轮廓的宽度以半宽度(v)表
3、示。Kvv曲线反映出原子核外层电子对不同频率的光辐射具有选择性吸收特性。7.1.2 原子吸收谱线的轮廓原子吸收谱线的轮廓.自然宽度自然宽度NN 它与原子发生能级间路迂时激发态原子的有限寿命有关。一般情况下约相当于10-4 .多普勤(Doppler)宽度D 这是由原子在空间作无规热运动所引致的。故又称热变宽。M的原子量,T 绝对温度,0谱线中频率 一般情况:D =10-2 碰撞变宽:原子核蒸气压力愈大,谱线愈宽。同种粒子碰撞赫尔兹马克(Holtzmank)变宽,异种粒子碰撞称罗论兹(Lorentz)变宽。10-2 场致变宽:在外界电场或磁场的作用下,引起原子核外层电子能级分裂而使谱线变宽现象称为
4、场致变宽。由于磁场作用引起谱线变宽,称为Zeeman(塞曼)变宽。自吸变宽:光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象。7.1.2 原子吸收谱线的轮廓原子吸收谱线的轮廓积分吸收分吸收 f-振子强度,N-单位体积内的原子数,e-为电子电荷,m-个电子的质量.7.1.3 积分吸收与峰值吸收积分吸收与峰值吸收积分吸收的限制分吸收的限制要对半宽度(v)约为10-3 nm的吸收谱线进行积分,需要极高分辨率的光学系统和极高灵敏度的检测器,目前还难以做到。这就是早在19世纪初就发现了原子吸收的现象,却难以用于分析化学的原因。7.1.3 积分吸收与峰值吸收积分吸收与峰值吸收峰值吸收峰值吸收
5、 1955年Walsh 提出,在温度不太高的稳定火焰条件下,峰值吸收系峰值吸收系数与火焰中被测元素的原子浓度也正比数与火焰中被测元素的原子浓度也正比。7.1.3 积分吸收与峰值吸收积分吸收与峰值吸收 7.1.3 积分吸收与峰值吸收积分吸收与峰值吸收 7.1.3 积分吸收与峰值吸收积分吸收与峰值吸收锐线光源:锐线光源:所发射谱线与原子化器中待测元素所吸收谱线中心频率(v0)一致,而发射谱线半宽度(vE)远小于吸收谱线的半宽度(vA)。此时,吸收就是在K0(v0)附近,即相当于峰值吸收。7.1.4 原子吸收光谱法的特点原子吸收光谱法的特点选择性好:选择性好:谱线比原子发射少,谱线重叠概率小。灵灵敏
6、敏度度高高:适用于微量和痕量的金属与类金属元素定量分析。精密度精密度(RSD%)高:高:一般都能控制在5%左右。操作方便和快速:操作方便和快速:无需显色反应。应用范围广。应用范围广。局局限限性性:不适用于多元素混合物的定性分析;对于高熔点、形成氧化物、形成复合物或形成碳化物后难以原子化元素的分析灵敏度低。7.2 原子吸收分光光度计原子吸收分光光度计 7.2.1 仪器结构与工作原理仪器结构与工作原理空心阴极灯(Hollow Cathode Lamp,HCL)由待测元素的金属或合金制成空心阴极圈和钨或其他高熔点金属制成;阳极由金属钨或金属钛制成。7.2.1.1 空心阴极灯空心阴极灯在高压电场下,阴
7、极向正极高速飞溅放电,与载气原子碰撞,使之电离放出二次电子,而使场内正离子和电子增加以维持电流。载气离子在电场中大大加速,获得足够的能量,轰击阴极表面时,可将被测元素原子从晶格中轰击出来,即谓溅射,溅射出的原子大量聚集在空心阴极内,与其它粒子碰撞而被激发,发射出相应元素的特征谱线-共振谱线。7.2.1.1 空心阴极灯空心阴极灯HCL电源调制电源调制为了提高HCL发射谱线强度、减少谱线半宽度和自吸现象,HCL普遍采用矩形窄脉冲调制电源供电。一般采用200 Hz的调制电源,占空比为1:3,矩形窄脉冲电流为1020 mA,平均电流为25 mA。7.2.1.1 空心阴极灯空心阴极灯单光束光学系统单光束
8、光学系统 7.2.1.2 光学系统光学系统双光束光学系统双光束光学系统 7.2.1.2 光学系统光学系统单色器单色器 由入射狭缝、反射镜、准直镜、平面衍射光栅、聚焦镜和出射狭缝组成。平面衍射光栅是主要色散部件,其性能指标为:分辨率、倒线色散率、聚光本领、闪耀特性以及杂散光水平等。目前,还有采用中阶梯光栅与石英棱镜组成的二维色散系统,全封闭的外光路与二维色散系统确保了较少杂散光水平和较高分辨率。7.2.1.2 光学系统光学系统检测系统检测系统 光电倍增管(PMT)是原子吸收分光光度计的主要检测器,要求在200900 nm波长范围内具有较高灵敏度和较小暗电流。数据处理与控制系统数据处理与控制系统
9、计算机光谱工作站对所采集的数字信号进行数据处理与显示,并对原子吸收分光光度计各种仪器参数进行自动控制。7.2.1.3 检测系统和数据处理与控制系统检测系统和数据处理与控制系统火焰原子化系统火焰原子化系统 7.2.2 原子化系统原子化系统火焰的类型与特性火焰的类型与特性 7.2.2 原子化系统原子化系统火焰的氧化火焰的氧化-还原特性还原特性中性火焰:中性火焰:燃烧充分、温度高、干扰小、背景低,燃烧充分、温度高、干扰小、背景低,适合于大多数元素分析。适合于大多数元素分析。贫燃火焰:贫燃火焰:燃烧充分,温度比中性火焰低,氧化性燃烧充分,温度比中性火焰低,氧化性较强,适用于易电离的碱金属和碱土金属元素
10、分析,较强,适用于易电离的碱金属和碱土金属元素分析,分析的重现性较差。分析的重现性较差。富燃火焰:富燃火焰:火焰燃烧不完全,具有强还原性,即火火焰燃烧不完全,具有强还原性,即火焰中含有大量焰中含有大量CH、C、CO、CN、NH等组分,干扰较等组分,干扰较大,背景吸收高,适用于形成氧化物后难以原子化大,背景吸收高,适用于形成氧化物后难以原子化的元素分析。的元素分析。7.2.2 原子化系统原子化系统火焰原子化的特点与局限性火焰原子化的特点与局限性 特点:简单,火焰稳定,重现性好,精密度高,应特点:简单,火焰稳定,重现性好,精密度高,应用范围广。用范围广。缺点:原子化效率低、只能液体进样缺点:原子化
11、效率低、只能液体进样 7.2.2 原子化系统原子化系统石墨炉原子化法石墨炉原子化法(GFAAS)7.2.2 原子化系统原子化系统特点特点:采用直接进样和程序升温方式,原子化温度曲线是采用直接进样和程序升温方式,原子化温度曲线是一条具有峰值的曲线。一条具有峰值的曲线。可达可达3500高温,且升温速度快。高温,且升温速度快。绝对灵敏度高,一般元素的可达绝对灵敏度高,一般元素的可达10-910-12 g。可分析可分析70多种金属和类金属元素。多种金属和类金属元素。所用样品量少所用样品量少(1100 mL)。但是石墨炉原子化法的分析速度较慢,分析成本高,但是石墨炉原子化法的分析速度较慢,分析成本高,背
12、景吸收、光辐射和基体干扰比较大。背景吸收、光辐射和基体干扰比较大。7.2.2 原子化系统原子化系统低温原子化法低温原子化法:低温原子化法也称为化学原子化法,包括冷原子化法和氢化物发生法。一般冷原子化法与氢化物发生法可以使用同一装置。冷原子化法:冷原子化法:直接测量Hg氢化物发生法:氢化物发生法:氢化物发生器生成金属或类金属元素氢化物,进入原子化器。7.2.2 原子化系统原子化系统光学系统的波长显示值误差 光学系统分辨率 基线的稳定性 吸收灵敏度(S1%)精密度 检出限 7.2.3 原子吸收分光光度计性能指标原子吸收分光光度计性能指标 7.3 干扰及其消除干扰及其消除物理干扰物理干扰:指样品溶液
13、物理性质变化而引起吸收信号强度变化,物理干扰属非选择性干扰非选择性干扰。物理干扰一般都是负干扰。消除方法:消除方法:配制与待测样品溶液基体相一致的标准溶液。采用标准加入法。被测样品溶液中元素的浓度较高时,采用稀释方法来减少或消除物理干扰。7.3.1 物理干扰及其消除方法物理干扰及其消除方法化学干扰化学干扰:待测元素在原子化过程中,与基体组分原子或分子之间产生化学作用而引起的干扰。消除方法:消除方法:改变火焰类型、改变火焰特性、加入释放剂、加入保护剂、加入缓冲剂、采用标准加入法。7.3.2 化学干扰及其消除方法化学干扰及其消除方法背景干扰也是光谱干扰,主要指分子吸与光散射造成光谱背景。分子吸收是
14、指在原子化过程中生成的分子对辐射吸收,分子吸收是带光谱。光散射是指原子化过程中产生的微小的固体颗粒使光产生散射,造成透过光减小,吸收值增加。背景干扰,一般使吸收值增加,产生正误差。7.3.5 背景吸收与校正背景吸收与校正氘灯背景校正技术氘灯背景校正技术 7.3.5 背景吸收与校正背景吸收与校正Zeeman效应背景校正技术效应背景校正技术:该法是在磁场作用下,简并的谱线发生分裂的现象。该法是在磁场作用下,简并的谱线发生分裂的现象。Zeeman方法:光源调制磁场加在光源上。吸收线调制磁场加在原子化器上使用广泛。磁场调制方式:磁场调制方式:交变磁场调制方式与恒定磁场调制方式。7.3.5 背景吸收与校
15、正背景吸收与校正交变磁场调制方式:交变磁场调制方式:磁场变化 零磁 激磁零磁时:原子+背景吸收;激磁时:仅背景吸收,他们之差为原子吸收。7.3.5 背景吸收与校正背景吸收与校正恒定磁场调制方式:恒定磁场调制方式:光源发射线通过起偏器后变为偏振光,某时刻平行于磁场方向的偏振光通过时,吸收线组分和背景产生吸收,得到原子吸收和背景吸收总吸光度;另一时刻垂直于磁场的偏振光通过原子能器时只有背景吸收,没有原子吸收,两者之差即为原子吸收。7.3.5 背景吸收与校正背景吸收与校正4.4.1.仪器操作条件的选择仪器操作条件的选择HCL电流选择:电流选择:HCL电流小,HCL所发射谱线半宽度窄,自吸效应小,灵敏
16、度增高;但HCL电流太小,HCL放电不稳定,影响分析灵敏度和精密度。吸收谱线选择:吸收谱线选择:首选最灵敏的共振吸收线。共振吸收线存在光谱干扰或分析较高含量的元素时,可选用其他分析线。7.4 原子吸收光谱法分析原子吸收光谱法分析光谱通带的选择光谱通带的选择光学系统指是狭缝宽度(S/mm)的选择。光谱通带主要取决于单色器的倒线色散率(D,-1)。光谱通带的计算式为:W=DS。光谱通带的宽窄直接影响分析的检出限、灵敏度和线性范围。对于碱金属、碱土金属,可用较宽的光谱通带,而对于如铁族、稀有元素和连续背景较强的情况下,要用较小的光谱通带。7.4.1 仪器操作条件的选择仪器操作条件的选择火焰的类型与特
17、性选择燃烧器高度的选择火焰原子化器的吸喷速率 也称为待测溶液的提升量。提升量过大,对火焰产生冷却效应,影响原子化效率;而提升量过小,影响分析方法的灵敏度和检出限。7.4.2 火焰原子化法最佳条件选择火焰原子化法最佳条件选择石墨管类型的选择:石墨管类型的选择:普通石墨管、热解涂层石墨管、L,vov平台石墨管 升温程序选择:升温程序选择:根据分析元素的种类、进样量的大小和基体效应的影响选择适宜的升温程序,是石墨炉原子化法分析的检出限、灵敏度、精密度和准确度的重要保证。基体改进剂选择基体改进剂选择进样量的选择:进样量的选择:与升温程序密切相关。一般进样量控制在5100L。7.4.3 石墨炉原子化法最
18、佳条件选择石墨炉原子化法最佳条件选择标准曲线法标准曲线法最常用的分析方法。标准曲线法最重要的是绘制一条标准曲线。配制一组含有不同浓度被测元素的标准的标准溶液,在与试样测定完全相同的条件下,依浓度由低到高的顺序测定吸光度。绘制吸光度A对浓度c的校准曲线。测定试样的吸光度值,在标准曲线上用内插法求出被测元素的含量。7.4.4 原子吸收光谱定量分析方法原子吸收光谱定量分析方法标准加入曲线法标准加入曲线法 7.4.4 原子吸收光谱定量分析方法原子吸收光谱定量分析方法 Ax=k C A0=k(C0+Cx)Cx=AxC0/(A0-Ax)标准加入法能消除基体干扰,不不能能消消背背景景干干扰扰。使用时,注意要
19、扣除背景干扰。原子荧光光谱法是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。7.5 原子荧光光谱法原子荧光光谱法4.5.1.1 原子荧光光谱的产生原子荧光光谱的产生气态自由原子吸收特征辐射后跃迁到较高能级,然后又跃迁回到基态或较低能级。同时发射出与原激发辐射波长相同或不同的辐射即原子荧光。原子荧光为光致发光光致发光,二次发光二次发光,激发光源停止时,再发射过程立即停止。7.5.1 原子荧光光谱法基本原理原子荧光光谱法基本原理共振荧光、非共振荧光、敏化荧光 7.5.1.2 原子荧光光谱的类型原子荧光
20、光谱的类型共振荧光共振荧光 气气态态原原子子吸吸收收共共振振线线被被激激发发后后,再再发发射射与与原原吸吸收收线线波波长长相相同同的的荧荧光光即即是是共共振振荧荧光光。它的特点是激发线与荧光线的高低能级相同。如锌原子吸收的光,它发射荧光的波长也为。若原子受热激发处于亚稳态,再吸收辐射进一步激发,然后再发射相同波长的共振荧光,此种原子荧光称为热助共振荧光。7.5.1.2 原子荧光光谱的类型原子荧光光谱的类型非共振荧光非共振荧光 当荧光与激发光的波长不相同时,产生非共振荧光。非共振荧光又分为直跃线荧光、阶跃线荧光、anti Stokes(反斯托克斯)荧光。7.5.1.2 原子荧光光谱的类型原子荧光
21、光谱的类型直跃线荧光直跃线荧光激发态原子跃迁回至高于基态的亚稳态时所发射的荧光称为直跃线荧光。由于荧光的能级间隔小于激发线的能线间隔,所以荧光的波长大于激发线的波长。如如果果荧荧光光线线激激发发能能大大于于荧荧光光能能,即即荧荧光光线线的的波波长长大大于于激激发发线线的的波波长长称称为为Stokes荧荧光光;反反之之,称称为为antiStokes荧荧光光。直直跃跃线线荧荧光光为为Stokes荧荧光。光。7.5.1.2 原子荧光光谱的类型原子荧光光谱的类型阶跃线荧光阶跃线荧光正常阶跃荧光为被光照激发的原子,以非辐射形式去激发返回到较低能级,再以辐射形式返回基态而发射的荧光。很显然,荧光波长大于激
22、发线波长。非辐射形式为在原子化器中原子与其他粒子碰撞的去激发过程。热助阶跃线荧光为被光照激发的原子,跃迁至中间能级,又发生热激发至高能级,然后返回至低能级发射的荧光。7.5.1.2 原子荧光光谱的类型原子荧光光谱的类型敏化荧光敏化荧光 受光激发的原子与另一种原子碰撞时,把激发能传递给另一个原子使其激发,后者再以辐射形式去激发而发射荧光即为敏化荧光。火焰原子化器中观察不到敏化荧光,在非火焰原子化器中才能观察到。在以上各种类型的原子荧光中,共振荧光强度最大,最为常用。7.5.1.2 原子荧光光谱的类型原子荧光光谱的类型气气态态和和基基态态原原子子核核外外层层电电子子对对特特定定频频率率(v0)光光
23、辐辐射射的的吸吸收收强强度度(Ia)、发发射射出出的的荧荧光光强强度度(If)和和荧荧光光量量子子效效率率()的关系为:的关系为:If=Ia展开,得到展开,得到 7.5.1.3 荧光强度与浓度的关系荧光强度与浓度的关系处于激发态的原子核外层电子除了以光辐射形式释放激发能量外,还可能产生非辐射形式释放激发能量,所发生的非辐射释放能量过程使光辐射的强度减弱或消失,称为荧光猝灭荧光猝灭。A*+B=A+B+H可用氩气来稀释火焰,减小猝灭现象 7.5.1.4 荧光猝灭荧光猝灭荧光猝灭的程度可以采用荧光量子效率()表示:=f f/A Af f 单位时间时内发射的荧光光子数A A单位时间内吸收激发光的光子数
24、一般小于1 7.5.1.5 荧光量子效率荧光量子效率原子荧光分光光度计的组成原子荧光分光光度计的组成原子荧光分光光度计与原子吸收分光光度计的结构相似。为了避免锐线光源所发射的强光辐射对弱原子荧光信号检测的影响,单色器和检测器的位置与激发光源位置呈90o角。原子荧光分光光度计都配置了氢化物(冷原子)发生器。7.5.2 原子荧光分光光度计原子荧光分光光度计原子荧光分光光度计分为色散型和非色散型两类:原子荧光分光光度计分为色散型和非色散型两类:7.5.2 原子荧光分光光度计原子荧光分光光度计氢化物发生法氢化物发生法:氢化物发生法是依据8种元素As、Bi、Ge、Pb、Sb、Se、Sn和Te的氢化物在常
25、温下为气态,利用某些能产生初生态还原剂(H)或某些化学反应,与样品中的这些元素形成挥发性共价氢化物。氢化物的发生器:氢化物的发生器:氢化物发生器一般包括进样系统、混合反应器、气液分离器和载气系统。根据不同的蠕动泵进样法,可以分为:连续流动法、流动注射法、断续流动法和间歇泵进样法等。7.5.2 原子荧光分光光度计原子荧光分光光度计氢化物发生法的特点:氢化物发生法的特点:分析元素在混合反应器中产生氢化物与基体元素分离,消除基体效应所产生的各种干扰。与火焰原子化法的雾化器进样相比,氢化物发生法具有预富集和浓缩的效能,进样效率高。连续流动式氢化物发生器易于实现自动化。不同价态的元素的氢化物发生的条件不同,可以进行该元素的价态分析。无法分析不能形成氢化物或挥发性化合物的元素,氢化物发生法存在液相和气相等干扰。7.5.2 原子荧光分光光度计原子荧光分光光度计原子荧光光谱法具有较低的检出限、较高的灵敏度、较少的干扰、吸收谱线与发射谱线比较单一、标准曲线的线性范围宽(35个数量级)等特点。仪器结构简单且价格便宜,由于原子荧光是向空间各个方向发射,比较容易设计多元素同时分析的多通道原子荧光分光光度计。原子荧光光谱法的定量分析主要采用标准曲线法标准曲线法,也可以采用标准加入法。7.5.3 原子荧光光谱定量分析原子荧光光谱定量分析